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Abstract. Covariant stochastic partial differential equations (SPDEs) are studied in any
dimension. A special class of such equations is selected and it is proved that the solutions can
be analytically continued to Minkowski spacetime yielding tempered Wightman distributions
which are covariant, obey the locality axiom and a weak form of the spectral axiom.

1. Introduction

The connection between scalar generalized random fields which are Markov and Euclidean
invariant and scalar quantum fields played a crucial role in the development of constructive
quantum-field theory [24, 43]. Symanzik [48] first pointed out this connection for the free
field and Nelson [36, 37] developed some general machinery to construct quantum fields
from Euclidean invariant Markov fields. Multicomponent Gaussian generalized random
fields which are Markov and invariant under the Euclidean group might play a role similar
to that of the free scalar field [26,50-52]. A simple example for such covariant random
fields is given by infinitely divisible random fields [10]. It seems that these fields are too
singular: perturbations by local multiplicative functionals as in the standard constructive
guantum-field-theory approach should lead to very serious ultraviolet divergence problems;
nevertheless there is another constructive approach which was initiated in [1-4] and in the
following papers [5, 6, 38, 39]. In all the above-mentioned papers dealing with vector fields
it is essential that a real vector space of dimendioga: 1, 2, 4, 8 can be given the structure

of a division algebra so that the Laplace operatgy = Zi’):l %22 can be factorized as a

product of two first-order covariant elliptic differential operatérsand 3. One can then
consider an equation of the form

dA =1 (1)

wheren is suitably chosen noise. The solution of this equation, which can be computed
explicitly, is again a covariant Markovian generalized random field. The moments of this
generalized random field can be analytically continued to Minkowski spacetime, yielding
a covariant system of Wightman distributions which obey the locality axiom and a weak
form of the spectral axiom [12, 28, 44]. By a weak form of the spectral axiom we mean
here that the Fourier transforms of the corresponding Wightman distributions are supported
in products of the closed forward lightcones. Moreover, if the ngis®ntains a nonzero
Poisson piece the corresponding system of Wightman functions is not quasi-free (non-
Gaussian).
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In this paper we shall consider an equation of the type
DA =y (2)

in arbitrary spacetime dimensiab > 2 and whereD is an arbitrary covariant differential
operator of any order.

It is among the main objectives of this paper to demonstrate that the existence of division
algebras in the particular dimensiods = 1, 2,4, and 8 is not essential and that in any
dimension a covariant Markovian generalized random fielthn be constructed by solving
equation(2) with suitableD andrn. Moreover it will be shown that it is a generic property
of a large class of such equations that the moments of the randomafiedd be analytically
continued to Minkowski space giving a set of tempered Wightman distributions which are
covariant and which fulfil the locality axiom and a weak form of the spectral axiom.

The essential problem behind these constructions is to decide whether a reflection-
positive non-Gaussian covariant generalized random fletcin be obtained from equation
(2). Unfortunately, the authors have obtained some partial negative results which will be
published in forthcoming papers [8, 9, 20]. For a construction of Gaussian Euclidean fields
of arbitrary spin in an axiomatic framework we refer to [42].

It seems to be an intrinsic property of gauge fields that the conditions of positivity,
covariance and locality are all together not compatible with local gauge invariance [45, 46].
In view of this, we expect that some of the models produced by the methods described in
this paper, though they are not reflection-positive, could find applications in problems of
guantum-field theory of gauge type with indefinite metrics. This is the second motivation
for this and some forthcoming papers [19, 34]. Examples of Gaussian reflection-positive
covariant random fields are contained in [52, 53].

1.1. Organization of the paper

Although the proper mathematical language for the material presented in this paper is the
language of vector bundles ov®&” and equivariant differential operators of first order
[31,7,21] we decided to present our results in a more elementary way in order to make
them easily accessible. In section 2 we fix the notation and mention some elementary results
which some of the readers probably know. The main result of the paper is contained in
section 3: assume th& has an admissible mass spectrum (see below for the definition)
and thaty is white noise that possesses all moments. Then there exist tempered covariant
distributions supported in the forward cone such that their Fourier—Laplace transforms are
equal to the moments of regarded as functions of the difference variables at positive time.
Finally, in the last section we present some particular examples in three-dimensional space
resulting from the lowest-dimensional real representations of the g&mE3). Models
describing the interaction between scalar fields and vector fields that we callsHikms
models and models describing two interacting vector fields are also presented in the last
section.

2. Random fields as solutions of covariant SPDEs

2.1. Covariant first-order differential operators

An important concept in physics is the concept of covariance, i.e. the fact that the form of
an equation does not change under suitable coordinate transformations. There is a lot of
literature on this subject [15, 17,25, 32,49]. In this section we shall investigate covariant
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first-order differential operators acting a@™-functionsR? — KV, K € {R,C}. We

assume that a representation of a Lie gradp< GL(D) is acting onK". In our

applications we shall mainly study the caét = SO(D), which is motivated by our

intention to produce covariant models in the framework of Euclidean quantum-field theory.
Let us, first of all, collect some basic definitions and facts.

Proposition 2.1.Let T be a representation of the Lie gro@in Autk". Let By, ..., Bp
be matricess My, n(K) and putB = (B, ..., Bp). Let E € Myxn(K) denote the unit
matrix.
We consider the first-order operator
Pood
DB:ZBJ-E+mE meR ©)

j=1 J
acting on the space of ®-functions R? — KV. Let T; denote the action of the
representation on functionsf € C*(RP?, KV):

T f(x) =1(8)f(g ) ge€G. @)

The following statements are equivalent.

(@) The form of Dy does not change if we make a coordinate transformation in
RP : x > gx, g € G, and simultaneously a coordinate transformatiofkih: y — (g)y.

(b) Dp commutes with7y; :

[Dp, T[] =0 Vg € G. (5)
©
D
Yogut@BiteH =8,  Vje{l...D}  VgeG 6)
k=1

wheregj, are the components gf € G.

Note that instead of taking the operater E in (3) we can take any matrix belonging
to the centre of the image af.

Definition 2.2.1f Dp fulfils one (and hence all) of the conditions in proposition 2.1, it will
be called covariant with respect to the representation

The set of all operators that are covariant with respect twill be denoted by
Cov(K", 7).

Note that if7(g) € O(IN) Vg € G and if (B, ..., Bp) defines a covariant operator
with respect tar then the transposed matrices;, . . ., B},) define a covariant operator with
respect tor, too.

If we omit the constant term in equation (3), we can be a little more general: In this
situation we can also admit matric8s that are not quadratic, i.e. we can consider operators
Dp : C*RP, KY) - C®RP, KM).

Proposition 2.3.Let t be a representation of the grou@ in AutkK" and leto be a
representation o6 in AutK™. Let By, ..., Bp € Myy and putB = (B, ..., Bp).

We consider the operatdpy defined in equation (3) and put = 0. Let7; denote
the action ofr in C*(R”, K") and letS] denote the action of in C*(R”, KM). The
following statements are equivalent.

(@) The form of Dy does not change if we make a coordinate transformation in
R? : x — gx,g € G, and simultaneously coordinate transformation&i : y — t(g)y
and inKM : 7z — o(g)z.
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(b) Dy intertwinesT, and S,:

C®RP, KNy 2%  CoRP,KM)
7l sz
C®RP, KNy 25 CoRP,KM).
(c)
D
gixo(g)Bit(g™) = B; Vje{l,...,D} Vg e G
k=1

whereg;, are the components gf e G.

For given t and o the set of all operators fulfilling one of the conditions of
proposition 2.3 will be denoted as C@v, K"); (¢, K¥)). The following lemma is the
infinitesimal version of the transformation properties (6).

Lemma 2.1l et g denote the Lie algebra a, and letL,,« € {1, ..., 1}, be a family of
generators of.

A necessary condition that &-tuple of matricesB = (Bu, ..., Bp) defines a covariant
operatorDg with respect to the representations that

D
Z(La)jkBk =[B;, dr(Ly)] Vo e {l,...,1} Vje{l, ..., D} (7)
k=1

where ¢ denotes the differential of.
If G is connected, condition (7) is also sufficient.

Sketch of the proof. The infinitesimal form follows easily from the global condition.
Therefore we shall concentrate on the proof of the inverse implication. First we show that
the statement to be proved holds for one-parameter groups. Let us take the one-parameter
group g(¢) = €'« and its representatiofi, (1) = €% =), By the commutator expansion

we have

S BT g = Y S [de (L) - [ (L), B J@).
k

k n=0 n:

Iterating (5) we obtain
[dt(Ly), ..., [dt(Ly), Bi]...] = —|:dr(La), e |:dr(La), > Bkl(La)kkl)] . }
k1
= = > (Lo)ualdr (L), ..., [dT(La), Bia] .. ]
k1

= (D" Y (LadityLadisks - - - (Ladt, sk, B,
kr..ky

so that

—)n .
Y BT Mg =) ( l)l D0 D E )i (Ladria (Ladisks - - - (Ladk, 1k, B,
k [

>0 v Koo

_ Z (—;’l)'”[n Z(é[LMLZ)ikann — Z |:eirLa (Z (—;’l)'”[n LZ>:| Bk” = B;.
: kn ' ik

n=0 k n>0
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This completes the proof for one-parameter groups. Since
Z Tor0: BT oy, (828116 = Z Z To, T Bi Ty ' To guik 2. = Z Te,BiTg, 8211 = By
k k i i

and the fact that the statement holds for one-parameter groups means we have proved the
implication for group elementg which are productg = g1(#1) . .. gx(#) of elements from

the one-parameter grougs(s;). The set of such products is dense in some open suibset
containing the identity. By the continuity argument the global condition is fulfiled/on

and consequently is fulfiled on the connected component containing the identity. [

Remark 2.2Let the Lie groupG be the union of connected compone@s= | J, G*
with G° being the connected component containing the unit elemeAssume that there
exist(s) R, € G such thatR,G° = G*. If for a given representation equations (7) hold
and if

D
D Rkt (Re) Bit M (Ry) = B; ®)
k=1

then the D-tuple (B;);=1
component(syz“.

p defines a covariant operatd under the action of the

,,,,,

Similarly we can also prove the following lemma.

Lemma 2.3Let G, g, L, be as in lemma 2.1 and let, T be two representations aF
in AutK" and in AulK™ respectively. A necessary condition thatDatuple of matrices
B = (By, ..., Bp) defines a covariant operat®rz € Cov((r, K), (o, KV)) is that

D
> (La)jk B + do(Lo)Bj + Bjdr(Ly) =0 9)
k=1
forall j e{l,...,D}anda =1,...,dimG.

If G is connected this condition is also sufficient.

For the case of the rotation groupO(3) in three-dimensional space and also for
the proper orthochronous Lorentz grou@(4) in four-dimensional spacetime covariant
operators have been extensively studied, see [17, 32, 49] and the references therein.

In the following we wish to study the inverse of a given covariant operator. It is
therefore natural to ask whether we can find any elliptic operators ifICovr).

For an operatoDg = Zle Bja%j +mE and a differential formZ]’?:1 p;dx; we define

the characteristic polynomial in the usual way:
def. &
el.
GDB(pls ceey pD)=| ZBJPJ
j=1

Note that this definition depends in general on the choice of coordinates.

Lemma 2.4(a) LetG € O(D) and letDp € Cov(K”, 1).

The form ofop, (p1, ..., pp) does not change if we make a coordinate transformation in
RP: x — gx, g € G, and simultaneously a coordinate transformatioKi: y — t(g)y.

(b) Let G be eitherSO(D) or O(D) and letDg € Cov(K", 7).

We have

deton, (pa, .., pp)) = C(pf +--- + pp)" (10)
for some constanf€ € C, n € N and such that < N/2.
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Moreover, ifN is odd detop, (p1, - .., pp)) = 0, i.e. elliptic operators that are covariant
with respect to some representationS® (D) or O(D) can only exist if the dimension of
the representation space is even.

Proof. (a) is easily seen by employing the covariance condition (6). To prove (b), observe

that detop, (p1. ..., pp)) is invariant under rotations and must therefore be a function of
pf+ e +p§). The assertion now follows from the fact that @et, (p1, ..., pp)) must be
a polynomial in thep;'s homogeneous of order less than or equaNto O

Remark 2.5L et G be eitherSO(D) or O(D) and letN be even. For a covariant operator
Dp € Cov(KY, 1) we have

D n
det(i ijj—i-mE) =C[[wi+-+r5+md (11)
j=1 a=1
wherem,,a =1,...,n,n < % andC are constantg C.

If all m, are real and” # 0, the operatoDy is invertible on suitably chosen function
spaces and in this case we shall call it admissible. Iiall# 0, operatorDj is said to
have a strictly positive mass spectrum.

Given two different but equivalent representatianandz, the following remark shows
how we can identify CoK", r) and CovK", 7).

Remark 2.6 We assume thaB = (By, ..., Bp) defines a covariant operator with respect
to the representation. Let 7 be an equivalent representatiof(g) = Mt(g)M 1.
ThenB' = (Bi,..., B},), Bj = MB;M™*, defines a covariant operator with respect to

T.

Remark 2.71t is possible to consider covariant differential operators of higher order, too.
For this let

D, = Z Bydy + M
loe|<n
wherea = (a1, ..., ap), &; € NU{O}, |a| = aa++-+ap, By € Myxn(K), dy = oo
XD Xl

and letr be a representation of the gro@ in AutK”. Then the operatoP, is called a
r-covariant differential operator of orderiff

(i) there existsx such thatjee| = n and B, # 0,

(i) the following diagrams commute:

C®[RP,KV) 25 C®(RP,KV)
7l \m
C®@RP,KN) 2%  Co@®P, KN,
In particular, takingD?, ..., D" € Cov(z; KV), the operato®, = D" ... D! is a covariant
operator ofnth order. However, since by increasing the dimenstorof the target space

K" the nth order covariant equation can be reduced to first order, we shall mainly restrict
ourselves to first-order operators.
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Let us now focus on the cas® = SO(D). The representation theory &O (D) is
well known [11, 14, 16, 17]. An important question for physics is which representations
r of G = SO(D) admit an extension to a representationf O(D). SinceSO(D) is a
subgroup of index 2 0O (D), it is a normal subgroup an@®(D)/SO(D) = Z,. Taking
any M € O(D) \ SO(D) it is easy to check that can be extended t®@ (D) iff there
existst(M) € Myxy(K) such that

T(MAM) = F(M)T(A)F (M) VA € SO(D). (12)

If D is odd one can always extend a given representatiaime fact thatD is odd implies
that the matrixM = —Ep = (=4§;;) has determinant-1, and if we putt(M) = =+idy,
condition (12) is fulfilled.

Let us now have a look at

R = (—01 E01> (13)

which is the reflection at the hyperplafe; = 0}. The choicet(—Ep) = =£idy implies
that the reflectionR is represented by

f(R)=ﬂ<(1) 0 ) (14)

—Ep_1

The case of even dimension is more complicated so that we only give a summary of
some group-theoretic results, referring the reader to [11] for details.

We assume that is an irreducible unitary representation. Taking sofe €
O(D) \ SO(D), we consider the representationfA) = t(M*AM), A € SO(D). If
o andrt are equivalentr is called self-conjugate. In this casecan be extended t@ (D),
and the extension is unique up to sign. If, howevegndr are not equivalent, one has to
pass to the induced representatigR of O(D), i.e. one has to double the dimension of the
representation spadé”. g is an irreducible representation 6f(D), and it is the only
irreducible representation @ (D) which containst when being restricted t§O (D).

Now we can introduce reflections into the concept of covariant operators.

Definition 2.4.Let T be a representation & = SO(D), and lett be an extension of
to O(D).

We call an operato@; € Cov(K", ) reflection covariant with respect t iff it
transforms covariantly under the full orthogonal group, i.e. if (6) héldss O (D).

Remark 2.8Let Dy be a covariant operator with respect to a representatiohSO (D),
and let? be an extension of to O(D). Dg is reflection covariant with respect tiff

T(R)B1T(R) = —B;
Z(R)B;T(R) = B; Viel{2, ...,D) (15)
whereR is the matrix in equation (13).

Unitary representations of the classical groups are well understood. In the following we
use representations in terms of real matrices.

Let V be a complex finite-dimensional vector space. Given a representatidi —
AutV, it is natural to ask whether can somehow be transformed into a representation in
terms of real matrices. A comprehensive treatment of this question can be found in [14, 16].

T is of real typeiff there is an antilinear map : V — V such that/? = idy and
Jt(g) =1t(g)JVg € G.

If 7 is of real type, consideW = {x € V|x = Jx}. W is a real subspace which is
t(g)-invariantVg € G. We have the decompositioi = W @ iW which shows that can
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be obtained fromq : G — W by extending the field of scalars. Choosing a basisWor
we get a representation in terms of real matrices.

7 is of quaternionic typéff there is an antilinear mag : V — V such that/? = —idy
and Jt(g) = t(g)JVg € G. If the representation is of quaternionic type, it can be
extended torquat: V @ jV, where{l, i, j, k} denotes, as usual, the canonical basis for the
space of quaternions.

If = is neither of real nor of quaternionic type, we say thas of complex type The
following proposition is a well known criterion to determine the type of a given irreducible
representation.

Proposition 2.5.Let dg denote the normalized Haar measure on the compact Lie gibup
and lety, denote the character of the irreducible representatioir — EndV.

1 < t is of real type
/ x:(g?)dg =140 < 1 is of complex type
¢ -1 <= t is of quaternionic type

For the proof see e.g. [54].

2.2. Non-Gaussian noise

In this section we shall deal withG-invariant and reflection-positive noise. Since
mathematical physicists might be less acquainted with the notion of non-Gaussian noise,
we briefly review some basic definitions and facts.

Definition 2.6.Let (22, =, u) be a probability space, and 1& be a space of smooth test
functionsR? — R¥. We assume thaf is equipped with some topology.
A generalized random field indexed liyis a map

¢ : T — {real-valued random variables @&}
which is almost surely linear, i.&/f, g € T,VA € R

e(f+8) =)+
e f) = re(f)
and which is continuous in the sense thaftif— f in T thene(f,) — ¢(f) in probability.

On the formal level, we have
N

N

() =10, )= (po> fo) = Z/ @u(x) fo (x) .
a=1 a=1YRP

Definition 2.7.Let D = D(RP) ® RY denote the space of test functiofis= (fi1, ..., fv)

with £, being smooth test functions frofR” into R with compact supports. White noise

is a generalized random fieldindexed byD such that its characteristic functional is given

by

I'(f) = E(eifﬂ(f)) — g o ¥V(F)de (16)
The functiony : RY — C has the so-called &vy—Khinchin representation
. 1 - ifer, y) | 14 leell?
YO =B, y) + 5 (v, Ay) + f (1 — @ 4 ) die (@) (17)
2 RM\(0} 1+ [le|? flee]|?

wherep € RV, A is a non-negative definit¥ x N-matrix andk is a non-negative, bounded
measure oR" \ {0} (see e.g. [6] for more details).
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If «k = 0andA # 0, ¢ is called Gaussian white noise whereas in the case 0,
k # 0, ¢ is called Poisson noise. In the following we always But 0 for simplicity.

In the last section we mentioned that we need representations of the Granigerms of
real matrices. The reason for this is tHafR”) ® R" is a vector space ovéR.

Since D is a nuclear space, by Minlos’ theorem [18] there is a unique probability
measureu on the dual spac®’ such that

/ e du(n) =T (f)
o

where(-, -) denotes the canonical pairing betweBhand D.
The functionys in (17) is a negative definite function, [10].

ve(y) = 3(y, Ay)
is the Gaussian part and

i 2
() = / (1_é<a,y> L e y) >1+||a|| e
RN\{0}

1+ lleli?) el

is the Poisson part of .
We shall also use the notation

To(f) = Eg(€?)) = g [¥o(fa)dr

and the analogous notation for the Poisson part.

The noisep can be regarded as the sum of Gaussian and Poisson goiseis + ¢p.
Correspondingly, we have a measui€ and a measurgp onD’, andu is the convolution
of these two measuregt = ug * up.

Let us mention two characteristic properties of white noise. White noise is invariant
under translations in the sense that the random variallgs) and¢(f) are equal in law,
where f,, is the functionx > f(x + xo).

If we take two functionsf, f> € D with disjoint supports, the random variableéf:)
andg( f2) are independent.

If ¢ is white noise such that the random varial€g) have zero mean and finite second
momentsy f, the functionys in (17) has the so-called Kolmogorov canonical representation

Y () = 3(y. Ay) + / (1—€“ +ifa, y)) dv(@) (18)
RV\{0}

where the so-calleddvy measure has the propert}{RN\{o} llee||2dv(er) < o0. In this case
¥ satisfies the inequalityy (v)| < M| y|?Yy € RY whereM is some constari 0. This
makes it possible to extend the generalized random §ietiol L.2.

In the following we shall restrict the class of admitted characteristic functionals even
further. We shall assume that thé\ly measure in (18) is invariant under the reflection
a — —a. Under this assumption the characteristic functional corresponding to the Poisson
part is of the form

Tp(f) = Ep(€?)) = @lzp Jen (€SO —1) dv(e) dr (19)

Moreover, we assume that the measursatisfies the condition

/ el dy(a) < oo vt > 0. (20)
RN
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This condition guarantees the existence of all moments of the corresponding noise and,
moreover, it allows us to extend the characteristic functional as an analytic function. To be
more precise, for fixef € DRP) @ RY

N's &+ Tp(Ef) = Ep(€)) (21)
is an entire function irf obeying the estimate

ITp(€ F)| < exp(&] / l|f (o) dbx / e | €& MMTLAT gy (o) (22)

wherel| f (0l = (X1 1/ @)AY2 and [[| £1]] = sug, | f ()]

Lemma 2.9Let us assume that thetky measure in (19) has finite first-order moments.
Then for anyf € D(RP), any cylinder functionF e L?(up) which is bounded and'* the
following integration-by-parts formula holds

)
/ (n, fAYF () du(n) =/<fA(X),E (AF(n)>>
D'(RP)QRN 8 ( )
+//fk(x)E(F(n+a8(x — )a; dv(er) dx (23)

where (f*); = 8 f, (Wx) denotes the functional derivative (widely used in mathematical

physics, see e.g. [24]), ar(d&an(x) Zk 1 Jkankm

Proof. Take F(n) = expi(n, g). Employing (19), it is easily seen that (23) holds. Since any
boundedC? cylinder function can be uniformly approximated by the sumsc, expi(n, g)
(see e.g. [24]) the assertion follows. O

If the characteristic functional of Poisson noigds of the form (19), the moments of
@ are given by

EP(H«p,ﬁ)) - 1‘[ / [ T tndudoe) @)
i=1

I, U.. unk J Jem,
T, NI =¢
fora#pB
where the summation runs over the set of all partitiond,of {1, 2, ..., n}.
If the noiseg is the sum of a Gaussian and a Poisson part, formula (24) has to be
altered:
E(]‘[(cp, ﬁ)) = > Ep( [ ﬁ))EG< []. ﬁ)>. (25)
i=1 MgUIllp=J, iellp iellg
McNIp=y
The moments of the Gaussian part are uniquely determined by the covadance
Ec((p, f)(e, f2)) = /(fl(x)vAfZ(X»dx- (26)

Remark 2.10The number of terms in (24) i$l, = Zzzl S, (p), where S, (p) are the
so-called Stirling numbers of the second kind. They are given explicitly by

1 ¢ (P -
Si(p) == Z(—l)f( .)(p - (27)
Pt iz J

Therefore the total number of terms in (25)%8;_, (;) .
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To derive (19) we made the assumption that tleey measure is invariant under the
reflectiona — —a. This implies that the contributions coming from partitiqii,) in (24)
containing somdl, with an odd number of elements vanish.

The following remark shows that the carrier set of Poisson noise is extremely small: it
consists of locally finite linear combinations of delta distributions.

Remark 2.11Let
Cir(R?) = {A c RP|A NK is finite for every compact set’}

i.e. Cys is the set of ‘locally finite configurations’Cyy can be given a topology such th@g
is a complete metrizable space, [29].

If A e Ct(RP), A obviously contains either a finite number of points or countably
many points. Let us fix an enumeration of these points,A.e= (x1, x2,...), x; € RP.
TakeD = (y1, y2,...) € (RM)A, We define

(A, T)(x) = E Yid(x — x;) (28)
X, €A
yiel

whereVf = (fi, ..., fv) €e DRP?) @ RV

N
b —x), ) =Y (e fe(x). (29)
k=1

Adapting the argument in [29], it can be proved that the set
C={8(A, DA € Cy(R”), T € (supp)™}
is a carrier set foup, i.e. up(C) = 1.

Remark 2.12Let A be an open subset @&”. We define thes-algebraX(A) as the
minimal up-completes-algebra generated by the random varialglesf) with f € D(R?)
supported inA. For A closed we definé (A) as the intersection of alE (A’) where A’
is open andA C A’. LetT" ¢ R? be a closed subset &” of Lebesgue measure zero. It
can be easily deduced from remark 2.11 that in this ¢ade) is trivial. It follows that the
random field corresponding t@p is Markov in the following sense.

For any openA C R” with sufficiently regular boundarg A and any bounded, G
measurable with respect ©(A) respectivelyX (A€)

E{F-G|IZ(0A)} = E{F|IZ(0A)} - EL{GIZ(0A)}) = E,,(F) - E,,(G) (30)

whereE,.{—|X(-)} denotes the corresponding conditional expectatiot-0f with respect
to theo-algebraX (-).

Definition 2.8.Let T be a representation of the grouf)O(D) in AutR”. We shall say
that the random fielg given by (16) and (17) ig-covariant iff

E(é(tp,Tzf)) — E(é((ﬂ,f)) — E(ei(Tffﬂ,f)) (31)

for all f € DRP) @ RY. T is the adjoint of theT, with respect to the canonical pairing
of D" andD.

Lemma 2.13Let T be a representation @fS)O(D) in AutR" and letg be white noise
given by (16) and (17). Then the noigeis r-covariant iff

() p=0,
(i) TTAT = A,
and

(iii) the measure d is t-invariant, provided that is given by orthogonal matrices.
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Let ¢ be t-covariant white noise and let, = t(R) be the representation of the reflection
operatorR in the representation, see (14). Letf* € D(R?) ® R be a finite sequence
of test functions supported if(z, x) € R?|+ > 0}. Then for any finite sequeneg € C we
have

2
Zcaﬁr(e'(‘/”f“)e_'(“"k’fﬁ)) _ Zca@r‘(el((p’fu))r(e—l(w,erﬂ)) — >0
P a,f

Z Car(é(w,f”))

(32)
provided that the noise iR, -invariant.

Remark 2.14The last property expresses the so-called reflection positivity of the noise
@. A covariant quantum field fulfilling all Wightman axioms can be constructed from the

moments of such covariant reflection-positive noise, see e.g. [24, 43]. However, it is fairly
easy to show that the arising quantum-field-theory operator is a multiple of the identity
operator.

2.3. Covariant SPDEs and their solutions

Let D € Cov(r, RY) for some real representatianof SO (D) and letD be the adjoint of
D with respect to the canonical pairing 8f andS whereS is the Schwartz space aft
is its topological dual. We shall consider SPDEs of the type

Dy =n (33)
wheren is a given generalized random field indexed®R”) @ RY. An operatorD will
be called regular (correspondingly, the equation will be called regular) iff there exists a
nuclear spacer such that the Green functioR—* of D is defined onF and D~* maps

F continuously intaS(R?) ® RY. A generalized random field indexed by.F is called a
weak solution of the regular equation (33) iff

(. =W DYf)  forall feF (34)

where= means equality in law. Lel, denote the characteristic functional of the figld
The characteristic functiondl, of a weak solutiony of the regular equation (33) is given
by

T,(f) =T,(D7f) for f e F. (35)
If D:SRP)@RY - SRP) ® RN is a continuous bijectiorD will be called strongly
regular. For example, iD is admissible with strictly positive mass spectr@is strongly
regular. In the case of strongly regutBrthe spaceS(R”) ® RY can be chosen as index
spaceF (RP).

Even if the covariant operatd? is invertible on the spac§, it may have a nontrivial
kernel onS’. Let Kp = {x € S'(R?) @ RV| Dy = 0}. Then for any weak solutiop of a
regular equation (33) and for anyy € Kp N F’ the new random fielg, with characteristic
functional

Ty, (f) = / %I, (f) dv(x) (36)

is again a weak solution of (33): is a probability measure okp N F'. In fact it can be
proved that, fixing the spacg, every weak solutions of (33) is of the form (36).

Let us recall that a generalized random figlthdexed by a spacg is calledc-covariant
iff

(i) T; acts in the space”, and (i) (n, 77 f) = (n, f) for eachg € (S)O(D) and
ferF.
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Proposition 2.9.Let us consider equation (33) with regul2rwheren is t-covariant. Then
the weak solution of (33) given by (34) is agaircovariant, provided thal; acts in the
spacef.

Proof. Covariance implies thaD7; = T;D. It follows easily thatD~'7; = T;D~ %
Therefore

(0. T f) = 0, DT f) = (0, T;DTH) Z g, f).
O

In the massless case we can again consider equations of the type (33), where the
covariant operatoP now intertwines two representations, i.c Cov(R", t); R", 0)).
The notions of regularity and weak solution are defined analogously.

Proposition 2.10Let D € Cow(R", 1), R",5)) be a regular operator and lgt be a
o-covariant random field indexed (R”) ® RY. Then the weak solution of the equation

Dy =1 37)

given by (34) is ar-covariant random field, provided that the corresponding index space
is 7 -invariant.

Remark 2.151t can be proved that in the case of irreducible representationS@f4)
the set Coyr, KV) consists of zero-order operators only. Therefore, in order to construct
nontrivial random fields, one has to consider operators which intertwine two representations,
i.e. one putsn = 0 in equation (3) and takes sorfiee Cow((R", 7), R", ¢)). This has
been done in the paper by Albeveri al [4]. They studied the quaternionic Cauchy—
Riemann operatoé € Cov(R", 1), (R, o)) wheret = (3, 3) ando = (0,1) are two
reducible representations 6fO(4).

For more details and new exampleslin= 4 we refer to our forthcoming paper [19].

Remark 2.16Let n be ar-covariant generalized random field indexed$§R?”) @ RV and

let for simplicity Dy, ..., D,,... € Cow(r,R") be strongly regular. Let us consider the
following sequence of covariant SPDEs:
D" = ™D Dipt =1 forn=1,23,.... (38)

Then weak solutiong” of (37), provided they exist, give rise to a sequerig&) of t-
covariant generalized random fields. In particular we have

Ty (f) =T, (D ... DI f). (39)

Let SRy @ RP™YH = {f e SRP)|suppf C {xo > (<)0, z € RP1},
Let R : SRP) @ RN — S(RP) @ RY be a continuous linear map such that

() R:S®RY,_)ORY - SR”,,)@R"
(i) R? =id.

A given random field, is calledR-reflection positive iff for all finite sequenceg € C,
fi € S(RY) ® RY the following inequality holds:

Y aaly,(f —Rf) = 0. (40)

k.l
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Proposition 2.11.Let D € Cov(r, R") be strongly regular and lgtbe R-reflection positive.

Define ) = {f € Fl3g € SRY,_)) ®R" such thatf = Dg and [R, D]g = 0}. Then

the weak solutiory of (33) given by (34) iskR-reflection positive in the following sense:
For all finite sequences, € C, f; € F, we have

D _aaly(fi = Rfi) 20,
k.l

Proof. Let f; = Dg, whereg; € SR ® RP~) @ RY. We useR-reflection positivity
(40) of n:
Yo aeTy(fi =R =Y e Ty(D fi =D 'R =Y el (g — Rer) = 0.
k.l k,l k,l
([

Remark 2.17We emphasize that in the previous proposition we have reflection positivity
only on the subspacB(S(R? ® R")). Though this subspace might look temptingly big, it
is too small to produce nontrivial models. Consider the equafipn= n, wheren is white
noise, and takef € D(S(R? @ RY)). The scalar product in the physical Hilbert space is
the trivial one given by white noise:

(pRF), () = (DR, n(Df)) = (n(Rg), n(2))-

A detailed discussion of reflection positivity for higher-spin bosonic models of Euclidean
guantum-field theory together with a proof of the no-go theorem quoted in the introduction
can be found in [8, 9, 20].

From now on we specialize our discussion to the case when-covariant white noise
with characteristic functionalr, given by, = I'ST'? whereT'? is given by the Gaussian
part of (18) andl“,f’ is given by (19). We collect some elementary properties of the weak
solution of (33).

(1) The weak solutionp of a regular equation (33) wittb € Cov(z, RY) has the
characteristic functiondr',

F>f—>T=TSry(f) (41)
where

I8 = g # /U@ AP () dedy (42)

Fg — of [P0 1] dv(e) dr (43)

There exists a unique Borel cylindric probability measuge o) on F'(RP)(= the weak
dual of F) such that

R = [ e, (44

(2) For any bounded™! cylindric function F € L?(dup) the following integration-by-
parts formula holds:

)
/ (¢, 1) F (@) dup(p) = / <fA<x>, E ((D—1>TAD—1F<¢>)> dx
F(RP)QRN dp(x)

+ / / FO)EF (@ +a; D7 — x))a; dv(er) dx (45)
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where(f*); = 8! f, f € F, § is Kronecker delta.
(3) If the Levy measuredhas all moments then the fieldhas all moments and they
are given by the following formula:

E<,ﬁ(w’ ﬁ-)) = > Ep( [T ﬁ))EG< [T, ﬁ)) (46)

MgUIlp=J, iellp iellg
MeNIp=y
where
n k
EP(H@, ﬁ-)) = > I f o / [ Jtew. D7 () by v (eur) (47)
i=1 Mu..Ully=J, =1 jell;
Haﬂnﬂ=®
for a#p
and
2n k
EG(H(% ﬁ)) = > 1/ et thiw. @ Hap - fiw) (48)
= kﬁfjkn =t
2n+1
EG( [T ﬁ)> =0. (49)
i=1

In particular the two-point momersz € 7' of ¢ is given by

S99 =@ AP o9+ [d@ [driw D@D e (60)

which has the following kernel
S2(x —y) = (D HTAD (x — y) + / dv (@) f dz (@, D71z — x)) (@, DXz — ¥)). (51)

(4) The setD1 % C = (Y, ;D(- — x)| where{x;} € Ci;(RP) anda; € suppd for
all i} is the carrier set of the Poisson part of the measwrg, dee remark 2.11.

(5) If the noise ist-covariant then the random field is T-covariant, provided that the
test function spaceF is T*-invariant.

(6) In the case of a strongly regular equation the corresponding solution is Markov.
The preservation of the Markov property under the transformation— D~y with
detﬁ(ip) £ 0, p € RP follows immediately from [30]. The case of nontrivial Keris
more subtle [27,34,47]. The solutions of (33) withbeing Gaussian lead to Gaussian
solutions and are therefore not very interesting from the point of view of physics. This
is why we require that the Poisson part of the white nojses nonzero in all further
applications.

Remark 2.180ther fundamental properties of the fieyd like Markov property, lattice
approximation(s) will be discussed elsewhere (see e.g. [5, 27, 30, 36]).

3. Fourier—Laplace transform properties of the solutions

Let us define the following spaces of functions:
S, (RP") = (f € S(RP")|f and all its derivatives vanish unless<0x? < x9 < ... < x%}
So(RP") = {f € SRP™)|f and all its derivatives vanish if; = x;
for some 1< i < j < n}
SRy) ={f € SB®)|suppf < [0, 00)} SR-) ={f € SR)|suppf < (—o0, O]}
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We identify the following spaces:
SE)=S®/SR)  S®:)=SER:)®S®R’™Y
SR?;RY) =R ® SRP)
SR RV = R @ SR™)
SR RN®) = RY)®" @ S, (RP")
So®P"; (RM)®") = RYV)®" @ So(R™")
SR ®RN)®) = R @ SR, ).
The following maps will be used:
d:SRP"Y) 5 fi> fUx1, X0 — X1, .., Xp —Xn-1) = f(x1, ..., x). (52)
The mapd is a morphism ofS,. (RP"; (RV)®") into S((IED)”; (RM)®m), The Fourier—
Laplace transform oS(R,"") is
S(ED") 5 £ anL(ql’ ) = /e*Z'k’:lqufei Zzzlqk~wkfn(xl’ X)) ®1y . (53)

Finally, we have the map

N SyRPOY) 5 £ s pf, € SRy (54)

where
NP1 pn) = 1 Pl pos0) (55)

It is well known [41] that the may is continuous with dense range ﬂ(@f“) and trivial
kernel. The notions of, of taking the Fourier—Laplace transform and of the magaturally
extend to the case of distributions with multi-indices.

Definition 3.1.A distribution F,y; € S, (RP"+D, (RV)®"+D) has the Fourier-Laplace
property (the FL property) iff there exists a distributiv¥, S/(Kf, (RM)®m) such that

Fl oy (xo, ... X) E/e_zz:ﬂgxféZZ:lpk'”Wn(pl,..-,pn)dpl.-- dpa (56)

where the equality is understood in the sense of distributions, see e.g. [12, 40, 41].

There are several necessary and sufficient conditions which guarantee that aFgigen
S'.(RP") has the FL property [12, 41, 43]. However, all known criteria are difficult to
check in concrete situations.

Let T be a representation O (D) in the space AuRRY). We shall say that a tempered
distribution S, € S'(R?; (RY)®") is covariant under the action af (r-covariant) iff for
eachg € SO(D) fi,..., f, € S(RP; R") the following equality holds:

where(T;, f)(x) = 1, f(g"*x). Adistributions, € §'(R?; (RY)®") is called symmetric iff
Sn(fl®"'®ﬁ1):Sn(fn(l)®"'®fn(n)) (58)

for any r € §"(= permutation group) and ang, ..., f, € S(RP; RM).
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Proposition 3.2.Let T be a representation of the grouO(D) in Aut@®"). If o, €
S'(RP; (RM)®") is symmetric covariant under the actionzofandan|b,£>o} has FL property

then there exists a unique tempered distribuditihh € S'(R?; (RY)®") such that:
(1) WF is supported in the product of forward light con¥s = {p € MP|p-p >
0; p° >0}, i.e.

suppwv, < (V)"
(2) W, is covariant under the representatio of SO(D — 1, 1), i.e.

Wn(fl®®fn)=Wn(Tthfl®®Tt£’1ﬁ1) (59)
foranyg € Ll(D); fi, ..., fn € S(RP; R™) and wherer™ is the analytic continuation of
7 into therepresentation O (D — 1, 1) via the ‘Weyl unitary trick’,

(3) W, is local which means that the inverse Fourier transformfxs, ..., x,) has
the property that if some;, x; 1 are such thatx; — x;,11)? < 0 then

Wn(-xl’ ey Xy Xigly oy xn) = Wn(-xl’ ey Xigdy Xiy e ’xn) (60)

(4)
Sg+1(x07 sy xn) = / e Zz:lpgx’?é szlpk.mkwf(plv cee pn) 1_[ dpl (61)
i=1

forxf<~~<x,9.

Proof. From the FL property ofS, it follows that there existdV, e S'(RP; (RV)®")
such that, is supported on positive energies, i.e. on the{ggt, ..., p,)|p° > 0 for all
i =1,...,n} and such that (4) holds. However, the distribution which is covariant under
the action of the Lorentz group must be supported in the orbit of Lorentz group [12, 28, 44]
and thus we conclude thaw, must be supported gV *)*". The locality of W, follows
from the symmetry property of, (see e.g. [28]). The uniqueness)df, follows from the
fact that the kernel of the Fourier—Laplace transform consists only of the vector 0[]

The difference variables momenis of the random fieldsA constructed in section 2
are defined as

oL . E) = S (X1, Xg1) (62)

where§; = x;41 —x; fori =1,...,n. Now we are ready to formulate the main result of
this paper.

Theorem 3.1Let t be a real representation 8fO(D) in Aut(RY), D e Cov(r, RY) with
an admissible spectrum and létbe a solution of

DA = n
where n is a T;-invariant Poisson noise. Then the difference variables moments
oA (x1, ..., x,) restricted to O< xf, ...,0< x,? have the FL property.
The proof of this theorem will be divided into three main steps.

Proposition 3.3.Let D € Cowv(r,R") have an admissible mass spectrum with strictly
positive masses. Then the Green functién = (D)~ of D restricted tOxS < xg
has the FL property.
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Lemma 3.2Let A, G4 be as in proposition 3.3. Then
S2 = (Ix1 — x2l) = f de Dy — x) D (x — x2) (63)

restricted tax? < x2 has the FL property.

Lemma 3.3Let A, G, be as in proposition 3.4. Then for aky= 1, 2, ... the distribution
S;, where

Sp(x1, ..., x) = /dx Dt —x1) ... DM x — xp) (64)

restricted tox? < --- < x? has the FL property.

The separation of the proof into lemma 3.2 and lemma 3.3 is made for reader’s convenience
only. Having proved proposition 3.1 and lemma 3.3, the proof of theorem 3.3 follows by
observing that the FL property is stable under taking tensor products and using formula
(47). The case that some of the masses are zero is easily covered by using the continuity of
the Fourier—Laplace transform and an easily controlled limiting procedure: we artificially
introduce small nonzero masses in the corresponding formulae, then let them tend to zero.
Although the covariance might be broken by introducing these masses it can be restored in
the limit.

Proof of proposition 3.3The typical matrix elemenﬂiﬂ of G4 has the form

0% (p)
[Ti=1(P§ + P2 + m?)
whereQ*f are polynomials in the variablgsof degree lower or equa¥ —2 and allm; > 0
due to assumption made dn

Let us first assume that all twe in equation (65) are different. Regarding the right-hand
side of (65) as a function gfy we can decompose it into elementary quotients

G (p) = (65)

0“* (p) 0% (po, )
_ i _ 66
[T_1(p + p? + m?) ; (P3+ p?+m?) (69)

whereQ;”g(po, p) = AP (p)po + B (p). AP (p), B*S(p) are rational functions in the
variablep which have no singularities on the real line. It is well known that the distribution

1 )
SZ (x :/7e_lpxd 67
S e e o (67)

has the FL property with the underlying distributig¥® given byW?(po, p) = €(po)d(p3—
p? —m?), wheree(pg) = 1 if pg > 0 and 0 otherwise. The inverse Fourier transform of a
typical term appearing in (66) is given faf > 0

wp . D oh -
(Aiﬂ('v)'axo + B f’(uV)) 52, (x°, x)
9 o0 i
= (A% (V)i g + B (iV))( / / e g P (ps — p? — m?) dpo dp)
X 0
- / / e P Pes(p2 — p? — m?) B (p) dpo dp
0

+/ /e""’""e‘i”'””{—ipoAf’ﬂ(p)8(p3 —p® —m?}dpodp (68)
0
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and this shows that the inverse Fourier transform of each term in (66) is the Fourier—Laplace
transform with underlying distribution for thith term

W (po, p) = (B (D) — i oA 0)}8(pE — P? — m?)e(po) (69)

andWef (po. p) = Y-, Wi (po. ).
Let us now consider the case that some of thein equation (65) are equal. In this
case the right-hand side of (65) is a sum of terms of the following form

Q(po, p)
(p§ +p? +m?)®
where the integew is > 1. The FL property now follows from the above arguments and
the following formula, which can be obtained by contour integration.

o0 gipoxo e @lxol
[ e
—o0 (170 + w9)*

wherew? = p? + m? and A¢ € R. This completes the proof of proposition 3.4. O

In the proofs of lemmas 3.2 and 3.3 we shall assume for notational simplification that
all them; in equation (65) are different so that we can use expansion (66).

Proof of lemma 3.2We shall proceed very close to the proof of theorem 4.21 in [4]. First,
we use the following identity

400 1 1
/ e Gult—nlg=talt—t2l g — g fl—n) 4 g Sulte—11)
—00 a+o a+o
1
St — 1) / o (@s+A-9)0) (- 11) 4 (70)
0

which is valid for anyr, t, € R, ¢1, ¢ € C such thatt, — 1, > 0, ¢y > 0, andfg, > 0.
Second we note that:

N .
. —i .
/1;«7 . / e 7l WP (po. p)dpodp = - | eV prmflolgivz A% () dP—Lp

RDO-1

p>+milxol
/ - e (p)d’p. (71)
]RD 1

/ 2+m
Now, we have

S(y1—y2) = / dx%dz D7 (x — y) D H(x — y2)

_ / d®de D2 — 1], (@ — y)DH(x® — Y3, (@ — y2))

+o00

dxo/dx/dplfdpz e—p?\x \1Ie pIIx° _)’2|e ip1-(z— '!ll)e_|P2 (x—y2)

—00

xWe (pl, POWs (p3, pz)
/dw/dp]_/dpz{

+(y2 _ yl)/ ds ef(Pfer(lfS)pg)(ygfy{’) }eipr(wyl)eipz-(wyz)

(e 171(\2 }ﬂ_{_e‘ﬁg(_\'g_}{)))

xWa (p3, POWa (P, P2). (72)
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Defining the following functions
8 ‘B
o /dpe ey AL CPIALT (D) e/ PHmE68—y9)
(6]
\/p2+mi2+ \/pz—i—m,*
te N PPHmE (3 - »1)} (73)
B B
Haﬂi‘“/ﬂ/i* — } / dp e 1P (W2—y) lf! (—p)Bfi (p)
@) =
\/pz—i-m,-z—i-\/pz + mZ
x{e Vv p2+m2(y3—y?) + e—\/m(yg—yg)} (74)
s _ B (—p)AL" (p)

3 ——*/dpe ip-(y2—y1)
4
\/p2+mi2 <\/p2+mi2+\/p2+mi2*>

«/p +m2(y9—y9) + e N/ P2mE (2 — >1)} (75)
aﬂ o' B
n‘("ﬁ’“ﬂ/ /dpe_'p (2—y1) A;"(=p)B." (p)
\/p2+m,»2* <\/p2+m,»2+\/p2+m,%)
X {e*\/ PP+m?(3—)9) + e*«/PZer?* (yé’fy?)} (76)
. 1
rg = =302 -9 / dpe Vv A (—py) AT (p2)
1
« / ds @ VP HmI03=3Ds g/ PPHml (55— (1-s) (77)
0
af o' p
rg " = 202D / dperwewy B CPBi (@)
\/pz + m»z\/p2 + m2
/ ds = V/PPAmE0—yDs g /PPHmE (8 -3 (1-s) (78)
e g
/ ds e N P? +m (»2 vf)v m(yz vl)(l s) (79)
B
repeft = )/dpe ip-(y2— yﬂw
1
x / ds -/ PHIEO8-30)s g /PP (939 (L-s). (80)
0

We obtain after some calculations that

S5 (3o — yp) = / dr D, (x — y1) Dy (x — y2)

(e ) -

i,i*
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From the explicit formulae (73)—(80) it follows that all the functions listed can be analytically
continued in the variabled — y? to the Minkowski space value — y9)

Proof of lemma 3.3The following (see [4, equations 4.16])

n 1 n—1j-1
—Cilt—ti — —Cz(tz—ll) Sn(ta—11) Gi(ti—t)
e df=———€ .e + e (t+1—t])
/ [ Gt 211

% 1_[ e Gi(ti lj+1)/ e [(G1+-4E)s+ (Gt +8) A=5)(t41—1))] ds
i=j+2

+ e alti—t) . @ fn-1(ti—tu-1) (82)
O+t

is valid for anyy; < 1, < --- < t, and complex numberg such thathiz; > 0 for all i and

the decomposition (66) is used to derive the following representaticﬂ;"of

S],Cdollﬂlmakﬂ" (X1, ey xp) = / de;lalﬁl(x —x1)... D;lakﬁk (x — xp)
- Z“'Z/dpldpl dpkdpknwékﬁk(pl’p])
51=1 8=
X /d:l’: Heﬁi(wfmi)?’j /dxone—pflxo—xl‘?\

n

— Z /dp]_ dpl dpk dpk/dml_[e_'(m ;) pj nwakﬁk(p]’p/)

81=1 sp=1
n—1j-1 o 0
| OHe”J(Xf"‘l)+Z]_[eP“ ECREE
pl +- 1li=
Jj=
y 1—[ o P00 / ds @ 18P+t P A=) (0 —20)]
i=j+2
1 _ p0(x0—x0) 59 (x0—x0 1)
4+ e AT e (83)
0 0
pLttp
Similarly, as in the proof of lemma 3.2, when using the explicit expressior{ﬁ/ﬂﬁ?(po, D)}

given in the proof of proposition 3.3 one can see that the functﬁé‘f‘i‘éﬂl""’"ﬂ" are given

by sums, where each term is manifestly given by the Fourier—Laplace transforms of some
tempered distribution supported on positive energies. |

Remark 3.4Let {W,} be a set of Wightman distributions, which are loag};covariant, and

fulfil the weak form of the spectral axiom. Then, using a version of the GNS construction
(see e.g. [46] for this), one can construct an inner product shAkevith the inner product

(-, -)pen, @ linear weakly continuous map

Ay SRP) @RY — e(HP)
where ¢(HP" is the set of linear not necessarily bounded operators acting{®n a
nonunitary and unbounded representaﬁdﬁ of Pl(D) in HP" under which the quantum-

field operator4, transforms covariantly, and a vect&, the physical vacuum, which is
cyclic with respect to the action of,(f) and invariant with respect tU% .
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4. Examples inD =3

The complete description of the set of all covariant operaforg Cov(r) wheret is

any finite dimensional representation of the gra8@(3) or SO(1, 3) is given in the
monographs [17, 35], see also [32]. To illustrate our general theory developed in the
previous paragraphs we focus on the lowest-dimensional real representB§aBsD;,

D; ® D; and D1 ® D1 of the groupSO(3). The much more interesting cage= 4 shall

be analysed in a greater details in our forthcoming paper [19]. The examples presented
below do not cover all the possibilities. The crucial point is that we have used a rather
special realification procedure in order to transform the complex description of the sets
Cov(r) given in [17, 35, 32] into a manifestly real form. Our realification is achieved by a
certain similarity transformation, fixed by the choice of a realification maikix Different
choices of the realification procedure may lead to different families of covariant operators,
not necessary connected by a real similarity transformation.

4.1. Dy & D;: Higgs-like models

This class of models described a doublet of fields: (¢g, A) wheregyg is the scalar field
and A is the vector field, coupled by noise through the corresponding covariant SPDE of
the form (33).

The realification matrixE g 1) is chosen to be,

V2 0 0 0

1 {0 i 0 —i
Fov="510 1 0o 1 84)

0 0 W2 0

The real form of the corresponding covariant operatBfs;y € Cov((Do & D1)®) with
respect taS O (3) with the mass ternM = mylo @ m113 is given by
mo aipo aipy  aip;
A _ bipo my —cip2  cipx
D(0,1) (P) - b'pl Cipz my —Cipo (85)
bip, —cip1 cipo mi

with a, b, ¢ € R with detDq 1) (ip) = (—c?p? + m?)(abp? + momy)

To obtain an admissible mass spectrum we need to put eitkeO or m; = 0, thus
giving up the ellipticity of D. Admissible covariant operators are obtainedcif= O if
m1 # 0 orm; = 0. We add that the operator is covariant with respecO{8) iff ¢ = 0.
The Green function is given by

ma —aipo —aip1 —aip;
N 1
Dl (ip=—3 .
e (P) abp? + momy —bipg

_bipl G;w(p)

—bip;

(86)

where

1 .
Gun(p) = —5—5——51(abp® + mom1) (18, + ciennps) — pupy(abma + c?mo))
—Ccepc+m3
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for u,v € {0, 1, 2}. The corresponding two-point function (more precisely the contribution
coming from the Poisson piece of noise and not integrated wéhylLmeasurey, see
equation 2.50):

o . ) )
Sy | $F () Q) SF(p,a)

S@ (p,a) = (8P (p,a)) = A
(O.l)(p ) (kl p ) éﬂ(%)(p,a) )
§{z§ (P, @) 5@(p.a)
S55 (p, )

(87)
where
85 (p. @) = Imyas — ibay, p,|?/(abp? + momy)?
Sé?(lﬁ a) = %233(—17, a) = (myag — ibay py)[mi(abp® + momy)ay,
+ia(—c?p? + mHasp, — (abmy + c?mo)a; i p,]
/(=c?p® + m3)(abp® + mom1)?
.SA’/(LZS (p,a) = [a2a§ + (a,\p;\)z(abml + szo)z/(_czpz + mi)z]pupv/(abp2 + mom1)2
+miayon/(—cp? + m3)? — my(abmy + c®mo)as pr(pucty + praty)
/(=c?p? + mD)?(abp® + mom1)
—iamios(puory — pyey)/(—c?p® + m3)(abp® + mom1)

for u,v €{0,1,2}.
Above we have used the notation for the variable @y measurex = (a3, ag, a1, @2).

Remarks. The representatiorDg @ D; is also of quaternionic type [13]. Choosing
mi+m2 =0anda = —1,b = 1, ¢ = 1 (respectively; = —1, b = 1, c = —1) we obtain the
purely quaternionic description of the corresponding Clifford algebr&%dDirac operators.
More explicitly let C(R%) denote the corresponding Clifford algebra o®t and A (R3)

the exterior algebra aR3. Let us denote by (R%) = C, (R3®) @ C_(R®) (respectively by
AR®) = AL (R3BA_(R?)) the canonical decomposition 6f(R®) (respectively ofA (R®)).

Let H stand for the noncommutative field of quaternions with the Qasg 7, k}. Noting
that C(R®) = H @ H and A(R%®) = H @ H and using two nonequivalent representations
of H on H given by left (respectively right) multiplication we obtain the following explicit
expressions for the corresponding left (respectively right) Dirac operatan&f):
0 —d -0 —d

o 0 —d &

DL = L)+ L(§)01+ L(k)d2 = 0. 8 0 —a (88)
dp —01 0o 0
respectively
0 —0g —01 —0o
Dr = R@)do+ R()oL + RByp=| 2 O %2 -~ (89)

0op —d2 O do
dp 01 —09 O
with the properties

IDLDE = —A31y
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whereD* = —DT, and respectively
DrDfy = —Asly
whereD} = —L(2)do— L(3)91 — L(k)9, (respectivelyD} = —R(2)dp — R(3)91 — R(k)dy).
Another simple covariant decomposition of the three-dimensional Laplaeiag can be

described by

0 do 01 02
30 0 - 32 a1

P=la &% o —a (20)
» - db O
and
0 %% o &
pr_[% 0 & —&

0 —d 0 9 (91)
d & —d O

and thenDD™ = Azls. This corresponds to the choiee = 1,6 = 1 andc = +1

(respectively—1) in (85). The question of the covariance properties of this decomposition
was the starting point of this research.

4.2. D1 ® D;: Interacting vector fields

The models of this sort describe a doublet of vector fiells= (Ag, A1, Ay), B =
(Bo, B1, B2) coupled to itself by the noise in the corresponding covariant SPDE.
The realification matrixE; 1) is chosen to be:

i 0 —-i 0 0 O
1 0 1 0 O O
1lo0iWw2 0 0 0 O

E(l,l) - 72 0 0 0 | 0 —| (92)
0 0 01 0 1
0 0 0 0 W2 0

The manifestly real expressions by, 1, € Cov((D1 @ D1)®) obtained by the application
of E(1,1) are given by:

mq —aipy aipy 0 —bipy  bipy
aip my  —aipg Dbip; 0 —bipg
,Z'j ( )= —aipl aipo I/.nl —bip]_ blpo O (93)
@nip 0 —cip2 cipy my —dip, dip1
cips 0 —cipg dip my —dipg
—cip1  cipg 0 —dipy dipg mo

where the central elemeM = m;13 ® mpls, my, my € R.
Computing deD(q 1)(ip) we obtain:

detﬁ(u)(ip) = mamo{(ad — bc)?p* + ((mgaz) + 2bcmymy + m%dz)p2 + mim%}
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The conditions for the proper mass spectrum could be easily obtainéijl,a)s(ip) is a

biquadratic polynom. Provided that d&t 5, (ip) # O we can invert the matri 1 (i p)
obtaining the corresponding Green function

GEV(p.o) | GE2(p. o)
1 |

Dy (p.a) =
Ly {f2p* — (h? — 2f mam2) p? + mim3}

(94)
2,1 2,2
GoP(p,a) | G2 (p,a)
where we havef = ad — bc, h = amy + dm; and
G 5P (p. ) = myma(—e1p? + mam3)8,, + ma(f2p? — mae2) pupy
+mima(—dfp? + am3)ie s p;
G2 (p, @) = bmimo{hp®S., — hpypy + (fp* + mima)ie s pi)
for u, v € {0, 1, 2} with e1 = (d%m1 + bemy), ez = (a’mo + bemy).
The two last blocks of the Green matrix can be obtained by making the following
exchangesu < d, my < my within the G%P (p, «) matrix to getG4? (p, a) andb « ¢
within G52 (p, «) to get GZP(p. ). The corresponding two-point Schwinger function

(more precisely the contribution coming from Poisson piece of the noise without integration
overv as in the previous case) is given by

SEV(p, ) | SE2(p, o)
$&(pa) = :
@b (f2p* = (1% = 2fmama) p? + mim3)?

(95)
$@(p,a) | §22(p, a)
with
SV (p, @) = [ma(f2p® — mae2)os ps — cmamahp; p; )2 pupy
+[ma(f2p? — moex)a; ps — cmimohp p;)
x[mima(—e1p? + mim3)(pucty + pvety) + cmamahp®(pufs + puBu)l
+emim3hp®(—e1p® + mum3) (o, By + atuBy)
+mim3(—e1p? + mym3)a,a, + (cmymahp®)?B, By
S0P (p, @) = —mama{hbma(f2p? — maes)(a; ps)°
+hemy(f2p? — exma) (Bipi)? — @ paBoPo
x[(f2p® — maex)(f2p® — myer) + mumabch?]) ppy + mam
xbhp?[(f2p? — mae2)at; ps. — machPs p;] puct, + mima(—e1p? + mim3)
x[(f2p? — mie1) Brps — mobhay pil puet, + mims(—eap? + mimz)
x[(f2p? — maea)a pr — michPy pilpuBy + mimachp?
x[(f2p? — mie1) Brps — bmahay p;] pu By + mimshp?
x[b(—e1p? + mimd)a,a, + c(—e2p? + mimz) B, ]
+mim5(—e1p? + mim3)(—ezp® + mima)e, By + be(mimahp?)?a, B,
for u,v € {0, 1, 2.

Wg use the notation for the variable oy measurex = (ag, a1, a2, Bo, B1, B2). The
block $2?(p, a) can be obtained by the exchanges> d, m; <> mz andb < c in the

block &V (p, &) and the blockS2Y (p, &) by b <> ¢ within the block S22 (p, o).
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It is worthwhile to observe that in the variety of covariant operators there does not exists
a reflection covariant operator. By specialization of the parameters of the covariant operator
we can find in the Gaussian part of two-point Schwinger function the Euclidean two-point
function of two copies of the so-called Euclidean Proca field introduced in [22, 23, 52, 53].
If we put

a=d=0 P=c*=1 bc=-1 and my=mo=m (96)

then we obtain for the Gaussian part

0 0O
(8 + pmé’v) Zimz 0 00
&2 0 0O
SG (1,1) (p) 0 00 . (97)
0 00 (8/“ + ;112%) pzim2
0 0O

The corresponding covariance matrixAs= 15 (see equation 2.17).

4.3. TheD% @ D%-case

This representation seems not to be of physical interest since it contradicts usual spin-
statistic connection. We note that in the case of nonpositive quantum-field theory the usual
connection between spin and statistic could be violated [12]. We usB:tI@Dl -covariant
noisen. In this context the study of realifications of this representanon could be more useful
than the analysis of the corresponding covariant operators, Green and Schwinger functions.
However, we mention this case to complete the list of the lowest dimensional cases.

The realification matrixE(%,%) is

10 0 1
1 (i 0 0 i
Eev=rlo01 -1 o (98)
Oi i O
The covariant operator in the Fourier representation is
cipp—dipy —aip, +m —dipg — cipy — bip;
—dipg — cipy + bip,  —cipg+dipy —aip, +m
D(; ;)(p) = . . . . . .
22 aipo+ bip1 +cip: bipg—aip; —dip;
—bipg+aipy —dip; aipo + bipy — cips
aipo — bip1 +cipz bipo + aip1 —dip;
—bipg —aipy — dips aipo — bip1 — cips (99)

—cipo —dip1+aipz +m dipo — cipy + bips
dipg — cip1 — bips cipo+dipy+aips+m

with a, b, ¢, d € R and de(D(l H(p) = [(@? 4+ b? + ¢? + d?) p? + m?)? — 4m?b?p?.

We can get the admissiblé mass spectrum taking, for exarbpie0.

We can use the methods presented above to obtain explicit formulae for the Green
functions and the Schwinger functions. The corresponding expressions are much more
complicated than in the examples above and will therefore not be presented here.
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