
Covariant SPDEs and quantum field structures

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 231

(http://iopscience.iop.org/0305-4470/31/1/022)

Download details:

IP Address: 171.66.16.121

The article was downloaded on 02/06/2010 at 06:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 231–258. Printed in the UK PII: S0305-4470(98)81098-6

Covariant SPDEs and quantum field structures

C Becker†, R Gielerak‡ and P Lugiewicz‡
† Institut für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany
‡ Institute of Theoretical Physics, University of Wroc law, 50-204, Wroc law, Poland

Received 20 January 1997, in final form 11 September 1997

Abstract. Covariant stochastic partial differential equations (SPDEs) are studied in any
dimension. A special class of such equations is selected and it is proved that the solutions can
be analytically continued to Minkowski spacetime yielding tempered Wightman distributions
which are covariant, obey the locality axiom and a weak form of the spectral axiom.

1. Introduction

The connection between scalar generalized random fields which are Markov and Euclidean
invariant and scalar quantum fields played a crucial role in the development of constructive
quantum-field theory [24, 43]. Symanzik [48] first pointed out this connection for the free
field and Nelson [36, 37] developed some general machinery to construct quantum fields
from Euclidean invariant Markov fields. Multicomponent Gaussian generalized random
fields which are Markov and invariant under the Euclidean group might play a role similar
to that of the free scalar field [26, 50–52]. A simple example for such covariant random
fields is given by infinitely divisible random fields [10]. It seems that these fields are too
singular: perturbations by local multiplicative functionals as in the standard constructive
quantum-field-theory approach should lead to very serious ultraviolet divergence problems;
nevertheless there is another constructive approach which was initiated in [1–4] and in the
following papers [5, 6, 38, 39]. In all the above-mentioned papers dealing with vector fields
it is essential that a real vector space of dimensionD = 1, 2, 4, 8 can be given the structure
of a division algebra so that the Laplace operator4D =

∑D
i=1

∂2

∂x2
i

can be factorized as a

product of two first-order covariant elliptic differential operators∂ and ∂. One can then
consider an equation of the form

∂A = η (1)

whereη is suitably chosen noise. The solution of this equation, which can be computed
explicitly, is again a covariant Markovian generalized random field. The moments of this
generalized random field can be analytically continued to Minkowski spacetime, yielding
a covariant system of Wightman distributions which obey the locality axiom and a weak
form of the spectral axiom [12, 28, 44]. By a weak form of the spectral axiom we mean
here that the Fourier transforms of the corresponding Wightman distributions are supported
in products of the closed forward lightcones. Moreover, if the noiseη contains a nonzero
Poisson piece the corresponding system of Wightman functions is not quasi-free (non-
Gaussian).
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In this paper we shall consider an equation of the type

DA = η (2)

in arbitrary spacetime dimensionD > 2 and whereD is an arbitrary covariant differential
operator of any order.

It is among the main objectives of this paper to demonstrate that the existence of division
algebras in the particular dimensionsD = 1, 2, 4, and 8 is not essential and that in any
dimension a covariant Markovian generalized random fieldA can be constructed by solving
equation(2) with suitableD andη. Moreover it will be shown that it is a generic property
of a large class of such equations that the moments of the random fieldA can be analytically
continued to Minkowski space giving a set of tempered Wightman distributions which are
covariant and which fulfil the locality axiom and a weak form of the spectral axiom.

The essential problem behind these constructions is to decide whether a reflection-
positive non-Gaussian covariant generalized random fieldA can be obtained from equation
(2). Unfortunately, the authors have obtained some partial negative results which will be
published in forthcoming papers [8, 9, 20]. For a construction of Gaussian Euclidean fields
of arbitrary spin in an axiomatic framework we refer to [42].

It seems to be an intrinsic property of gauge fields that the conditions of positivity,
covariance and locality are all together not compatible with local gauge invariance [45, 46].
In view of this, we expect that some of the models produced by the methods described in
this paper, though they are not reflection-positive, could find applications in problems of
quantum-field theory of gauge type with indefinite metrics. This is the second motivation
for this and some forthcoming papers [19, 34]. Examples of Gaussian reflection-positive
covariant random fields are contained in [52, 53].

1.1. Organization of the paper

Although the proper mathematical language for the material presented in this paper is the
language of vector bundles overRD and equivariant differential operators of first order
[31, 7, 21] we decided to present our results in a more elementary way in order to make
them easily accessible. In section 2 we fix the notation and mention some elementary results
which some of the readers probably know. The main result of the paper is contained in
section 3: assume thatD has an admissible mass spectrum (see below for the definition)
and thatη is white noise that possesses all moments. Then there exist tempered covariant
distributions supported in the forward cone such that their Fourier–Laplace transforms are
equal to the moments ofA regarded as functions of the difference variables at positive time.
Finally, in the last section we present some particular examples in three-dimensional space
resulting from the lowest-dimensional real representations of the groupSO(3). Models
describing the interaction between scalar fields and vector fields that we call Higgs3-like
models and models describing two interacting vector fields are also presented in the last
section.

2. Random fields as solutions of covariant SPDEs

2.1. Covariant first-order differential operators

An important concept in physics is the concept of covariance, i.e. the fact that the form of
an equation does not change under suitable coordinate transformations. There is a lot of
literature on this subject [15, 17, 25, 32, 49]. In this section we shall investigate covariant
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first-order differential operators acting onC∞-functionsRD → KN , K ∈ {R,C}. We
assume that a representation of a Lie groupG ⊆ GL(D) is acting onKN . In our
applications we shall mainly study the caseG = SO(D), which is motivated by our
intention to produce covariant models in the framework of Euclidean quantum-field theory.

Let us, first of all, collect some basic definitions and facts.

Proposition 2.1.Let τ be a representation of the Lie groupG in AutKN . Let B1, . . . , BD
be matrices∈MN×N(K) and putB = (B1, . . . , BD). Let E ∈MN×N(K) denote the unit
matrix.

We consider the first-order operator

DB =
D∑
j=1

Bj
∂

∂xj
+mE m ∈ R (3)

acting on the space ofC∞-functions RD → KN . Let T τg denote the action of the
representationτ on functionsf ∈ C∞(RD,KN):

T τg f (x) = τ(g)f (g−1x) g ∈ G. (4)

The following statements are equivalent.
(a) The form ofDB does not change if we make a coordinate transformation in

RD : x 7→ gx, g ∈ G, and simultaneously a coordinate transformation inKN : y 7→ τ(g)y.
(b) DB commutes withT τg :

[DB, T τg ] = 0 ∀g ∈ G. (5)

(c)
D∑
k=1

gjkτ (g)Bkτ(g
−1) = Bj ∀j ∈ {1, . . . , D} ∀g ∈ G (6)

wheregjk are the components ofg ∈ G.

Note that instead of taking the operatorm·E in (3) we can take any matrixM belonging
to the centre of the image ofτ .

Definition 2.2.If DB fulfils one (and hence all) of the conditions in proposition 2.1, it will
be called covariant with respect to the representationτ .

The set of all operators that are covariant with respect toτ will be denoted by
Cov(KN, τ).

Note that if τ(g) ∈ O(N ) ∀g ∈ G and if (B1, . . . , BD) defines a covariant operator
with respect toτ then the transposed matrices(Bt1, . . . , B

t
D) define a covariant operator with

respect toτ , too.
If we omit the constant term in equation (3), we can be a little more general: In this

situation we can also admit matricesBj that are not quadratic, i.e. we can consider operators
DB : C∞(RD,KN)→ C∞(RD,KM).
Proposition 2.3.Let τ be a representation of the groupG in AutKN and let σ be a
representation ofG in AutKM . Let B1, . . . , BD ∈MM×N and putB = (B1, . . . , BD).

We consider the operatorDB defined in equation (3) and putm = 0. Let T τg denote
the action ofτ in C∞(RD,KN) and letSσg denote the action ofσ in C∞(RD,KM). The
following statements are equivalent.

(a) The form ofDB does not change if we make a coordinate transformation in
RD : x 7→ gx, g ∈ G, and simultaneously coordinate transformations inKN : y 7→ τ(g)y

and inKM : z 7→ σ(g)z.
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(b) DB intertwinesTg andSg:

C∞(RD,KN) DB−→ C∞(RD,KM)
T τg

y ySσg
C∞(RD,KN) DB−→ C∞(RD,KM).

(c)

D∑
k=1

gjkσ (g)Bkτ(g
−1) = Bj ∀j ∈ {1, . . . , D} ∀g ∈ G

wheregjk are the components ofg ∈ G.

For given τ and σ the set of all operators fulfilling one of the conditions of
proposition 2.3 will be denoted as Cov((τ,KN); (σ,KM)). The following lemma is the
infinitesimal version of the transformation properties (6).

Lemma 2.1.Let g denote the Lie algebra ofG, and letLα, α ∈ {1, . . . , l}, be a family of
generators ofg.

A necessary condition that aD-tuple of matricesB = (B1, . . . , BD) defines a covariant
operatorDB with respect to the representationτ is that

D∑
k=1

(Lα)jkBk = [Bj , dτ(Lα)] ∀α ∈ {1, . . . , l} ∀j ∈ {1, . . . , D} (7)

where dτ denotes the differential ofτ .
If G is connected, condition (7) is also sufficient.

Sketch of the proof. The infinitesimal form follows easily from the global condition.
Therefore we shall concentrate on the proof of the inverse implication. First we show that
the statement to be proved holds for one-parameter groups. Let us take the one-parameter
groupg(t) = eitLα and its representationTg(t) = eit dτ(Lα). By the commutator expansion
we have ∑

k

TgBkT
−1
g gik =

∑
k

∑
n>0

intn

n!
[dτ(Lα), . . . , [dτ(Lα), Bk] . . .](e

itLα )ik.

Iterating (5) we obtain

[dτ(Lα), . . . , [dτ(Lα), Bk] . . .] = −
[

dτ(Lα), . . . ,

[
dτ(Lα),

∑
k1

Bk1(Lα)kk1)

]
. . .

]
= −

∑
k1

(Lα)kk1[dτ(Lα), . . . , [dτ(Lα), Bk1] . . .]

= (−1)n
∑
k1...kn

(Lα)kk1(Lα)k1k2 . . . (Lα)kn−1knBkn

so that∑
k

TgBkT
−1
g gki =

∑
n>0

(−i)ntn
n!

∑
k

∑
k1...kn

(−1)n(eitLα )ik(Lα)kk1(Lα)k1k2 . . . (Lα)kn−1knBkn

=
∑
n>0

(−i)ntn
n!

∑
kn

(eitLαLnα)iknBkn =
∑
k

[
eitLα

(∑
n>0

(−i)ntn
n!

Lnα

)]
ik

Bkn = Bi.



Covariant SPDEs and quantum field structures 235

This completes the proof for one-parameter groups. Since∑
k

Tg2g1BkT
−1
g2g1
(g2g1)lk =

∑
k

∑
i

Tg2Tg1BkT
−1
g1
T −1
g2
g1,ikg2,li =

∑
i

Tg2BiTg2g2,li = Bl

and the fact that the statement holds for one-parameter groups means we have proved the
implication for group elementsg which are productsg = g1(t1) . . . gk(tk) of elements from
the one-parameter groupsgi(ti). The set of such products is dense in some open subsetU

containing the identity. By the continuity argument the global condition is fulfiled onU ,
and consequently is fulfiled on the connected component containing the identity. �

Remark 2.2.Let the Lie groupG be the union of connected componentsG = ⋃
αG

α

with G0 being the connected component containing the unit elemente. Assume that there
exist(s)Rα ∈ G such thatRαG0 = Gα. If for a given representationτ equations (7) hold
and if

D∑
k=1

(Rα)jkτ (Rα)Bkτ
−1(Rα) = Bj (8)

then theD-tuple (Bj )j=1,...,D defines a covariant operatorD under the action of the
component(s)Gα.

Similarly we can also prove the following lemma.

Lemma 2.3.Let G, g, Lα be as in lemma 2.1 and letσ , τ be two representations ofG
in AutKN and in AutKM respectively. A necessary condition that aD-tuple of matrices
B = (B1, . . . , BD) defines a covariant operatorDB ∈ Cov((τ,KM), (σ,KN)) is that

D∑
k=1

(Lα)jkBk + dσ(Lα)Bj + Bj dτ(Lα) = 0 (9)

for all j ∈ {1, . . . , D} andα = 1, . . . ,dimG.
If G is connected this condition is also sufficient.

For the case of the rotation groupSO(3) in three-dimensional space and also for
the proper orthochronous Lorentz groupL↑+(4) in four-dimensional spacetime covariant
operators have been extensively studied, see [17, 32, 49] and the references therein.

In the following we wish to study the inverse of a given covariant operator. It is
therefore natural to ask whether we can find any elliptic operators in Cov(KN, τ).

For an operatorDB =
∑D
j=1Bj

∂
∂xj
+mE and a differential form

∑D
j=1pjdxj we define

the characteristic polynomial in the usual way:

σDB (p1, . . . , pD)
def=i

D∑
j=1

Bjpj .

Note that this definition depends in general on the choice of coordinates.

Lemma 2.4.(a) LetG ⊆ O(D) and letDB ∈ Cov(KN, τ).
The form ofσDB (p1, . . . , pD) does not change if we make a coordinate transformation in

RD: x 7→ gx, g ∈ G, and simultaneously a coordinate transformation inKN : y 7→ τ(g)y.
(b) LetG be eitherSO(D) or O(D) and letDB ∈ Cov(KN, τ).
We have

det(σDB (p1, . . . , pD)) = C(p2
1 + · · · + p2

D)
n (10)

for some constantC ∈ C, n ∈N and such thatn 6 N/2.
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Moreover, ifN is odd det(σDB (p1, . . . , pD)) = 0, i.e. elliptic operators that are covariant
with respect to some representation ofSO(D) orO(D) can only exist if the dimension of
the representation space is even.

Proof. (a) is easily seen by employing the covariance condition (6). To prove (b), observe
that det(σDB (p1, . . . , pD)) is invariant under rotations and must therefore be a function of
p2

1+ · · · +p2
D. The assertion now follows from the fact that det(σDB (p1, . . . , pD)) must be

a polynomial in thepj ’s homogeneous of order less than or equal toN . �

Remark 2.5.LetG be eitherSO(D) orO(D) and letN be even. For a covariant operator
DB ∈ Cov(KN, τ) we have

det

(
i
D∑
j=1

Bjpj +mE
)
= C

n∏
α=1

(p2
1 + · · · + p2

D +m2
α) (11)

wheremα, α = 1, . . . , n, n 6 N
2 , andC are constants∈ C.

If all mα are real andC 6= 0, the operatorDB is invertible on suitably chosen function
spaces and in this case we shall call it admissible. If allmα 6= 0, operatorDB is said to
have a strictly positive mass spectrum.

Given two different but equivalent representationsτ and τ̃ , the following remark shows
how we can identify Cov(KN, τ) and Cov(KN, τ̃ ).

Remark 2.6.We assume thatB = (B1, . . . , BD) defines a covariant operator with respect
to the representationτ . Let τ̃ be an equivalent representation:τ̃ (g) = Mτ(g)M−1.

ThenB ′ = (B ′1, . . . , B ′D), B ′j = MBjM−1, defines a covariant operator with respect to
τ̃ .

Remark 2.7.It is possible to consider covariant differential operators of higher order, too.
For this let

Dn =
∑
|α|6n

Bα∂α +M

whereα = (α1, . . . , αD), αi ∈ N∪{0}, |α| = α1+· · ·+αD, Bα ∈MN×N(K), ∂α = ∂α1+...αD
∂x

αD
D ...∂x

α1
1

and letτ be a representation of the groupG in AutKN . Then the operatorDn is called a
τ -covariant differential operator of ordern iff

(i) there existsα such that|α| = n andBα 6= 0,
(ii) the following diagrams commute:

C∞(RD,KN) Dn−→ C∞(RD,KN)
T τg

y yT τg
C∞(RD,KN) DB−→ C∞(RD,KN).

In particular, takingD1, . . . ,Dn ∈ Cov(τ ;KN), the operatorDn = Dn . . .D1 is a covariant
operator ofnth order. However, since by increasing the dimensionN of the target space
KN the nth order covariant equation can be reduced to first order, we shall mainly restrict
ourselves to first-order operators.
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Let us now focus on the caseG = SO(D). The representation theory ofSO(D) is
well known [11, 14, 16, 17]. An important question for physics is which representations
τ of G = SO(D) admit an extension to a representationτ̃ of O(D). SinceSO(D) is a
subgroup of index 2 ofO(D), it is a normal subgroup andO(D)/SO(D) ∼= Z2. Taking
anyM ∈ O(D) \ SO(D) it is easy to check thatτ can be extended toO(D) iff there
existsτ̃ (M) ∈MN×N(K) such that

τ(MAM) = τ̃ (M)τ(A)τ̃ (M) ∀A ∈ SO(D). (12)

If D is odd one can always extend a given representationτ : the fact thatD is odd implies
that the matrixM = −ED = (−δij ) has determinant−1, and if we putτ̃ (M) = ±idV ,
condition (12) is fulfilled.

Let us now have a look at

R =
(−1 0

0 ED−1

)
(13)

which is the reflection at the hyperplane{x1 = 0}. The choiceτ̃ (−ED) = ±idV implies
that the reflectionR is represented by

τ̃ (R) = ±τ
(

1 0
0 −ED−1

)
. (14)

The case of even dimension is more complicated so that we only give a summary of
some group-theoretic results, referring the reader to [11] for details.

We assume thatτ is an irreducible unitary representation. Taking someM ∈
O(D) \ SO(D), we consider the representationσ(A) = τ(M−1AM),A ∈ SO(D). If
σ andτ are equivalent,τ is called self-conjugate. In this caseτ can be extended toO(D),
and the extension is unique up to sign. If, however,σ andτ are not equivalent, one has to
pass to the induced representationτind of O(D), i.e. one has to double the dimension of the
representation spaceKN . τind is an irreducible representation ofO(D), and it is the only
irreducible representation ofO(D) which containsτ when being restricted toSO(D).

Now we can introduce reflections into the concept of covariant operators.

Definition 2.4.Let τ be a representation ofG = SO(D), and letτ̃ be an extension ofτ
to O(D).

We call an operatorDB ∈ Cov(KN, τ) reflection covariant with respect tõτ iff it
transforms covariantly under the full orthogonal group, i.e. if (6) holds∀g ∈ O(D).
Remark 2.8.Let DB be a covariant operator with respect to a representationτ of SO(D),
and letτ̃ be an extension ofτ to O(D). DB is reflection covariant with respect tõτ iff

τ̃ (R)B1τ̃ (R) = −B1

τ̃ (R)Bj τ̃ (R) = Bj ∀j ∈ {2, . . . , D} (15)

whereR is the matrix in equation (13).

Unitary representations of the classical groups are well understood. In the following we
use representations in terms of real matrices.

Let V be a complex finite-dimensional vector space. Given a representationτ : G→
AutV , it is natural to ask whetherτ can somehow be transformed into a representation in
terms of real matrices. A comprehensive treatment of this question can be found in [14, 16].

τ is of real type iff there is an antilinear mapJ : V → V such thatJ 2 = idV and
Jτ(g) = τ(g)J∀g ∈ G.

If τ is of real type, considerW = {x ∈ V |x = Jx}. W is a real subspace which is
τ(g)-invariant∀g ∈ G. We have the decompositionV = W ⊕ iW which shows thatτ can
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be obtained fromτreal : G→ W by extending the field of scalars. Choosing a basis forW ,
we get a representation in terms of real matrices.

τ is of quaternionic typeiff there is an antilinear mapJ : V → V such thatJ 2 = −idV
and Jτ(g) = τ(g)J∀g ∈ G. If the representationτ is of quaternionic type, it can be
extended toτquat : V ⊕ jV , where{1, i, j, k} denotes, as usual, the canonical basis for the
space of quaternions.

If τ is neither of real nor of quaternionic type, we say thatτ is of complex type. The
following proposition is a well known criterion to determine the type of a given irreducible
representation.

Proposition 2.5.Let dg denote the normalized Haar measure on the compact Lie groupG
and letχτ denote the character of the irreducible representationτ : G→ EndV .∫

G

χτ (g
2) dg =


1 ⇐⇒ τ is of real type

0 ⇐⇒ τ is of complex type

−1 ⇐⇒ τ is of quaternionic type.

For the proof see e.g. [54].

2.2. Non-Gaussian noise

In this section we shall deal withG-invariant and reflection-positive noise. Since
mathematical physicists might be less acquainted with the notion of non-Gaussian noise,
we briefly review some basic definitions and facts.

Definition 2.6.Let (�,6,µ) be a probability space, and letT be a space of smooth test
functionsRD → RN . We assume thatT is equipped with some topology.

A generalized random field indexed byT is a map

ϕ : T −→ {real-valued random variables on�}
which is almost surely linear, i.e.∀f, g ∈ T , ∀λ ∈ R

ϕ(f + g) = ϕ(f )+ ϕ(g)
ϕ(λf ) = λϕ(f )

and which is continuous in the sense that iffn→ f in T thenϕ(fn)→ ϕ(f ) in probability.

On the formal level, we have

ϕ(f ) = 〈ϕ, f 〉 =
N∑
α=1

〈ϕα, fα〉 =
N∑
α=1

∫
RD
ϕα(x)fα(x) dx.

Definition 2.7.Let D = D(RD)⊗ RN denote the space of test functionsf = (f1, . . . , fN)

with fα being smooth test functions fromRD into R with compact supports. White noise
is a generalized random fieldϕ indexed byD such that its characteristic functional is given
by

0(f ) = E(eiϕ(f )) = e−
∫
RD ψ(f (x)) dx. (16)

The functionψ : RN → C has the so-called Ĺevy–Khinchin representation

ψ(y) = i〈β, y〉 + 1

2
〈y,Ay〉 +

∫
RN\{0}

(
1− ei〈α,y〉 + i〈α, y〉

1+ ‖α‖2

)
1+ ‖α‖2

‖α‖2
dκ(α) (17)

whereβ ∈ RN , A is a non-negative definiteN×N -matrix andκ is a non-negative, bounded
measure onRN \ {0} (see e.g. [6] for more details).
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If κ = 0 andA 6= 0, ϕ is called Gaussian white noise whereas in the caseA = 0,
κ 6= 0, ϕ is called Poisson noise. In the following we always putβ = 0 for simplicity.

In the last section we mentioned that we need representations of the groupG in terms of
real matrices. The reason for this is thatD(RD)⊗ RN is a vector space overR.

SinceD is a nuclear space, by Minlos’ theorem [18] there is a unique probability
measureµ on the dual spaceD′ such that∫

D′
ei(η,f )dµ(η) = 0(f )

where(·, ·) denotes the canonical pairing betweenD′ andD.
The functionψ in (17) is a negative definite function, [10].

ψG(y) = 1
2〈y,Ay〉

is the Gaussian part and

ψP(y) =
∫
RN\{0}

(
1− ei〈α,y〉 + i〈α, y〉

1+ ‖α‖2

)
1+ ‖α‖2

‖α‖2
dκ(α)

is the Poisson part ofψ .
We shall also use the notation

0G(f ) = EG(e
iϕG(f )) = e−

∫
ψG(f (x)) dx

and the analogous notation for the Poisson part.
The noiseϕ can be regarded as the sum of Gaussian and Poisson noise:ϕ = ϕG+ ϕP.

Correspondingly, we have a measureµG and a measureµP onD′, andµ is the convolution
of these two measures:µ = µG ∗ µP.

Let us mention two characteristic properties of white noise. White noise is invariant
under translations in the sense that the random variablesϕ(fx0) andϕ(f ) are equal in law,
wherefx0 is the functionx 7→ f (x + x0).

If we take two functionsf1, f2 ∈ D with disjoint supports, the random variablesϕ(f1)

andϕ(f2) are independent.
If ϕ is white noise such that the random variablesϕ(f ) have zero mean and finite second

moments∀f , the functionψ in (17) has the so-called Kolmogorov canonical representation

ψ(y) = 1
2〈y,Ay〉 +

∫
RN\{0}

(1− ei〈α,y〉 + i〈α, y〉) dν(α) (18)

where the so-called Ĺevy measureν has the property
∫
RN\{0} ‖α‖2 dν(α) <∞. In this case

ψ satisfies the inequality|ψ(y)| 6 M‖y‖2∀y ∈ RN whereM is some constant> 0. This
makes it possible to extend the generalized random fieldϕ to L2.

In the following we shall restrict the class of admitted characteristic functionals even
further. We shall assume that the Lévy measureν in (18) is invariant under the reflection
α 7→ −α. Under this assumption the characteristic functional corresponding to the Poisson
part is of the form

0P(f ) = EP(e
iϕ(f )) = e

∫
RD

∫
RN (e

i〈α,f (x)〉−1) dν(α) dx. (19)

Moreover, we assume that the measureν satisfies the condition∫
RN

et‖α‖ dν(α) <∞ ∀t > 0. (20)
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This condition guarantees the existence of all moments of the corresponding noise and,
moreover, it allows us to extend the characteristic functional as an analytic function. To be
more precise, for fixedf ∈ D(RD)⊗ RN

CN 3 ξ 7−→ 0P(ξf ) = EP(e
i(·,ξf )) (21)

is an entire function inξ obeying the estimate

|0P(ξF )| 6 exp(|ξ |
∫
‖f (x)‖ dx

∫
‖α‖e(|ξ |‖α‖‖|f |‖) dν(α)) (22)

where‖f (x)‖ = (∑N
i=1 |fi(x)|2)1/2 and‖|f |‖ = supx |f (x)|.

Lemma 2.9.Let us assume that the Lévy measureν in (19) has finite first-order moments.
Then for anyf ∈ D(RD), any cylinder functionF ∈ L2(µP) which is bounded andC1 the
following integration-by-parts formula holds∫

D′(RD)⊗RN
〈η, f λ〉F(η) dµ(η) =

∫ 〈
f λ(x), E

(
A

δ

δη(x)
F (η)

)〉
dx

+
∫ ∫

f λ(x)E(F (η + αδ(x − ·))αλ dν(α) dx (23)

where(f λ)i = δλi f , δ
δη(x)

denotes the functional derivative (widely used in mathematical

physics, see e.g. [24]), and(A δ
δη(x)

)j =
∑N

k=1Ajk
δ

δηk(x)
.

Proof. TakeF(η) = exp i(η, g). Employing (19), it is easily seen that (23) holds. Since any
boundedC1 cylinder function can be uniformly approximated by the sums

∑
n cn exp i(η, g)

(see e.g. [24]) the assertion follows. �

If the characteristic functional of Poisson noiseϕ is of the form (19), the moments of
ϕ are given by

EP

( n∏
i=1

(ϕ, fi)

)
=

∑
51∪...∪5k=Jn
5α∩5β=∅

forα 6=β

k∏
l=1

∫ ∫ ∏
j∈5l

〈αl, fj (xl)〉 dxl dν(αl) (24)

where the summation runs over the set of all partitions ofJn = {1, 2, . . . , n}.
If the noiseϕ is the sum of a Gaussian and a Poisson part, formula (24) has to be

altered:

E

( n∏
i=1

(ϕ, fi)

)
=

∑
5G∪5P=Jn
5G∩5P=∅

EP

( ∏
i∈5P

(ϕ, fi)

)
EG

( ∏
i∈5G

(ϕ, fi)

)
. (25)

The moments of the Gaussian part are uniquely determined by the covarianceA:

EG((ϕ, f1)(ϕ, f2)) =
∫
〈f1(x), Af2(x)〉 dx. (26)

Remark 2.10.The number of terms in (24) is5n =
∑n

p=1 Sn(p), whereSn(p) are the
so-called Stirling numbers of the second kind. They are given explicitly by

Sn(p) = 1

p!

p∑
j=0

(−1)j
(
p

j

)
(p − j)n. (27)

Therefore the total number of terms in (25) is
∑n

k=0

(
n

k

)
5k.
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To derive (19) we made the assumption that the Lévy measureν is invariant under the
reflectionα 7→ −α. This implies that the contributions coming from partitions(5α) in (24)
containing some5α with an odd number of elements vanish.

The following remark shows that the carrier set of Poisson noise is extremely small: it
consists of locally finite linear combinations of delta distributions.

Remark 2.11.Let

Clf (RD) = {3 ⊂ RD|3 ∩K is finite for every compact setK}
i.e.Clf is the set of ‘locally finite configurations’.Clf can be given a topology such thatClf

is a complete metrizable space, [29].
If 3 ∈ Clf (RD), 3 obviously contains either a finite number of points or countably

many points. Let us fix an enumeration of these points, i.e.3 = (x1, x2, . . .), xi ∈ RD.
Take0 = (γ1, γ2, . . .) ∈ (RN)|3|. We define

δ(3, 0)(x) =
∑
xi∈3
γi∈0

γiδ(x − xi) (28)

where∀f = (f1, . . . , fN) ∈ D(RD)⊗ RN

(γiδ(·− xi), f ) =
N∑
k=1

(γi)kfk(xi). (29)

Adapting the argument in [29], it can be proved that the set

C = {δ(3, 0)|3 ∈ Clf (RD), 0 ∈ (suppν)|3|}
is a carrier set forµP, i.e.µP(C) = 1.

Remark 2.12.Let 3 be an open subset ofRD. We define theσ -algebra6(3) as the
minimalµP-completeσ -algebra generated by the random variables(· , f ) with f ∈ D(RD)
supported in3. For3 closed we define6(3) as the intersection of all6(3′) where3′

is open and3 ⊂ 3′. Let 0 ⊂ RD be a closed subset ofRD of Lebesgue measure zero. It
can be easily deduced from remark 2.11 that in this case6(0) is trivial. It follows that the
random field corresponding toµP is Markov in the following sense.

For any open3 ⊂ RD with sufficiently regular boundary∂3 and any boundedF , G
measurable with respect to6(3) respectively6(3c)

EµP{F ·G|6(∂3)} = EµP{F |6(∂3)} · EµP{G|6(∂3)} = EµP(F ) · EµP(G) (30)

whereEµP{−|6(·)} denotes the corresponding conditional expectation of(−) with respect
to theσ -algebra6(·).
Definition 2.8.Let τ be a representation of the group(S)O(D) in AutRN . We shall say
that the random fieldϕ given by (16) and (17) isτ -covariant iff

E(ei(ϕ,Tτ f )) = E(ei(ϕ,f )) = E(ei(T ∗τ ϕ,f )) (31)

for all f ∈ D(RD)⊗ RN . T ∗τ is the adjoint of theTτ with respect to the canonical pairing
of D′ andD.

Lemma 2.13.Let τ be a representation of(S)O(D) in AutRN and letϕ be white noise
given by (16) and (17). Then the noiseϕ is τ -covariant iff

(i) β = 0,
(ii) τTAτ = A,
and
(iii) the measure dκ is τ -invariant, provided thatτ is given by orthogonal matrices.
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Let ϕ be τ -covariant white noise and letRτ = τ(R) be the representation of the reflection
operatorR in the representationτ , see (14). Letf α ∈ D(RD) ⊗ RN be a finite sequence
of test functions supported in{(t, x) ∈ RD|t > 0}. Then for any finite sequencecα ∈ C we
have∑
α,β

cαcβ0(e
i(ϕ,f α)e−i(ϕ,Rτ f β)) =

∑
α,β

cαcβ0(e
i(ϕ,f α))0(e−i(ϕ,Rτ f β)) =

∣∣∣∣∑
α

cα0(e
i(ϕ,f α))

∣∣∣∣2 > 0

(32)

provided that the noise isRτ -invariant.

Remark 2.14.The last property expresses the so-called reflection positivity of the noise
ϕ. A covariant quantum field fulfilling all Wightman axioms can be constructed from the
moments of such covariant reflection-positive noise, see e.g. [24, 43]. However, it is fairly
easy to show that the arising quantum-field-theory operator is a multiple of the identity
operator.

2.3. Covariant SPDEs and their solutions

Let D ∈ Cov(τ,RN) for some real representationτ of SO(D) and letD̃ be the adjoint of
D with respect to the canonical pairing ofS ′ andS whereS is the Schwartz space andS ′
is its topological dual. We shall consider SPDEs of the type

D̃ϕ = η (33)

whereη is a given generalized random field indexed byS(RD)⊗RN . An operatorD will
be called regular (correspondingly, the equation will be called regular) iff there exists a
nuclear spaceF such that the Green functionD−1 of D is defined onF andD−1 maps
F continuously intoS(RD)⊗ RN . A generalized random fieldϕ indexed byF is called a
weak solution of the regular equation (33) iff

〈ϕ, f 〉 ∼= 〈η,D−1f 〉 for all f ∈ F (34)

where∼= means equality in law. Let0η denote the characteristic functional of the fieldη.
The characteristic functional0ϕ of a weak solutionϕ of the regular equation (33) is given
by

0ϕ(f ) = 0η(D−1f ) for f ∈ F . (35)

If D : S(RD) ⊗ RN → S(RD) ⊗ RN is a continuous bijectionD will be called strongly
regular. For example, ifD is admissible with strictly positive mass spectrumD is strongly
regular. In the case of strongly regularD the spaceS(RD) ⊗ RN can be chosen as index
spaceF(RD).

Even if the covariant operatorD is invertible on the spaceS, it may have a nontrivial
kernel onS ′. Let KD ≡ {χ ∈ S ′(RD)⊗RN | D̃χ = 0}. Then for any weak solutionϕ of a
regular equation (33) and for anyχ ∈ KD ∩F ′ the new random fieldϕχ with characteristic
functional

0ϕχ (f ) =
∫

ei〈χ,f 〉0ϕ(f ) dν(χ) (36)

is again a weak solution of (33).ν is a probability measure onKD ∩ F ′. In fact it can be
proved that, fixing the spaceF , every weak solutions of (33) is of the form (36).

Let us recall that a generalized random fieldη indexed by a spaceF is calledτ -covariant
iff

(i) T τg acts in the spaceF , and (ii) 〈η, T τg f 〉 ∼= 〈η, f 〉 for eachg ∈ (S)O(D) and
f ∈ F .
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Proposition 2.9.Let us consider equation (33) with regularD whereη is τ -covariant. Then
the weak solution of (33) given by (34) is againτ -covariant, provided thatT τg acts in the
spaceF .

Proof. Covariance implies thatDT τg = T τg D. It follows easily thatD−1T τg = T τg D−1.
Therefore

〈ϕ, T τg f 〉 ∼= 〈η,D−1T τg f 〉 ∼= 〈η, T τg D−1f 〉 ∼= 〈ϕ, f 〉.
�

In the massless case we can again consider equations of the type (33), where the
covariant operatorD now intertwines two representations, i.e.D ∈ Cov((RN, τ); (RN, σ )).
The notions of regularity and weak solution are defined analogously.

Proposition 2.10.Let D ∈ Cov((RN, τ), (RN, σ )) be a regular operator and letη be a
σ -covariant random field indexed byS(RD)⊗RN . Then the weak solution of the equation

D̃ϕ = η (37)

given by (34) is aτ -covariant random field, provided that the corresponding index spaceF
is T τg -invariant.

Remark 2.15.It can be proved that in the case of irreducible representations ofSO(4)
the set Cov(τ,KN) consists of zero-order operators only. Therefore, in order to construct
nontrivial random fields, one has to consider operators which intertwine two representations,
i.e. one putsm = 0 in equation (3) and takes someD ∈ Cov((RN, τ), (RN, σ )). This has
been done in the paper by Albeverioet al [4]. They studied the quaternionic Cauchy–
Riemann operator∂ ∈ Cov((RN, τ), (RN, σ )) whereτ = ( 1

2,
1
2) and σ = (0, 1) are two

reducible representations ofSO(4).
For more details and new examples inD = 4 we refer to our forthcoming paper [19].

Remark 2.16.Let η be aτ -covariant generalized random field indexed byS(RD)⊗RN and
let for simplicity D1, . . . ,Dn, . . . ∈ Cov(τ,RN) be strongly regular. Let us consider the
following sequence of covariant SPDEs:

D̃nϕn = ϕ(n−1) D̃1ϕ
1 = η for n = 1, 2, 3, . . . . (38)

Then weak solutionsϕn of (37), provided they exist, give rise to a sequence(ϕn) of τ -
covariant generalized random fields. In particular we have

0ϕ(n) (f ) = 0η(D−1
n . . .D−1

1 f ). (39)

Let S(R+/(−) ⊗ RD−1) = {f ∈ S(RD)|suppf ⊂ {x0 > (<)0,x ∈ RD−1}.
Let R : S(RD)⊗ RN → S(RD)⊗ RN be a continuous linear map such that

(i) R : S(RD+/(−))⊗ RN → S(RD−/(+))⊗ RN
(ii) R2 = id.

A given random fieldη is calledR-reflection positive iff for all finite sequencesck ∈ C,
fk ∈ S(RD+)⊗ RN the following inequality holds:∑

k,l

ckcl0η(fk −Rfl) > 0. (40)
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Proposition 2.11.LetD ∈ Cov(τ,RN) be strongly regular and letη beR-reflection positive.
DefineF+/(−) ≡ {f ∈ F |∃g ∈ S(RD+/(−))⊗RN such thatf = Dg and [R,D]g = 0}. Then
the weak solutionϕ of (33) given by (34) isR-reflection positive in the following sense:

For all finite sequencesck ∈ C, fk ∈ F+ we have∑
k,l

ckcl0ϕ(fk −Rfl) > 0.

Proof. Let fk = Dgk, wheregk ∈ S(R+ ⊗ RD−1) ⊗ RN . We useR-reflection positivity
(40) of η:∑
k,l

ckcl0ϕ(fk −Rfl) =
∑
k,l

ckcl0η(D−1fk −D−1Rfl) =
∑
k,l

ckcl0η(gk −Rgl) > 0.

�

Remark 2.17.We emphasize that in the previous proposition we have reflection positivity
only on the subspaceD(S(RD+ ⊗RN)). Though this subspace might look temptingly big, it
is too small to produce nontrivial models. Consider the equationD̃ϕ = η, whereη is white
noise, and takef ∈ D(S(RD+ ⊗ RN)). The scalar product in the physical Hilbert space is
the trivial one given by white noise:

〈ϕ(Rf ), ϕ(f )〉 = 〈η(D−1Rf ), η(D−1f )〉 = 〈η(Rg), η(g)〉.
A detailed discussion of reflection positivity for higher-spin bosonic models of Euclidean
quantum-field theory together with a proof of the no-go theorem quoted in the introduction
can be found in [8, 9, 20].

From now on we specialize our discussion to the case whenη is τ -covariant white noise
with characteristic functional0η given by0η = 0G

η 0
P
η where0G

η is given by the Gaussian
part of (18) and0P

η is given by (19). We collect some elementary properties of the weak
solution of (33).

(1) The weak solutionϕ of a regular equation (33) withD ∈ Cov(τ,RN) has the
characteristic functional0ϕ

F 3 f → 0C
ϕ = 0G

ϕ 0
P
ϕ(f ) (41)

where

0G
ϕ = e−

1
2

∫ 〈f (x),(D−1)TAD−1(x−y)f (x)〉 dx dy (42)

0P
ϕ = e

∫ ∫
[ei〈α,D−1∗f 〉(x)−1] dν(α) dx. (43)

There exists a unique Borel cylindric probability measure dµD(ϕ) on F ′(RD)(≡ the weak
dual ofF ) such that

0ϕ(f ) ≡
∫
F ′(RD)

dµD(ϕ)e
i〈ϕ,f 〉. (44)

(2) For any boundedC1 cylindric functionF ∈ L2(dµD) the following integration-by-
parts formula holds:∫
F ′(RD)⊗RN

〈ϕ, f λ〉F(ϕ) dµD(ϕ) =
∫ 〈

f λ(x), E

(
(D−1)TAD−1 δ

δϕ(x)
F (ϕ)

)〉
dx

+
∫ ∫

f (x)EF(ϕ + αλD̃−1(·− x))αλ dν(α) dx (45)
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where(f λ)i = δλi f , f ∈ F , δτi is Kronecker delta.
(3) If the Levy measure dν has all moments then the fieldϕ has all moments and they

are given by the following formula:

E

( n∏
i=1

(ϕ, fi)

)
=

∑
5G∪5P=Jn
5G∩5P=∅

EP

( ∏
i∈5P

(ϕ, fi)

)
EG

( ∏
i∈5G

(ϕ, fi)

)
(46)

where

EP

( n∏
i=1

(ϕ, fi)

)
=

∑
51∪...∪5k=Jn
5α∩5β=∅

for α 6=β

k∏
l=1

∫
. . .

∫ ∏
j∈5l

〈αl,D−1fj (xl)〉 dxl dν(αl) (47)

and

EG

( 2n∏
i=1

(ϕ, fi)

)
=

∑
ik<jk

k=1,...,n

k∏
l=1

∫ ∫
dx dy 〈fik (x), (D−1)TAD−1(x − y)fjk (x)〉 (48)

EG

( 2n+1∏
i=1

(ϕ, fi)

)
= 0. (49)

In particular the two-point momentS2
ϕ ∈ F ′⊗2 of ϕ is given by

S2
ϕ(f ⊗ g) = (D−1)TAD−1(f ⊗ g)+

∫
dν (α)

∫
dx 〈α,D−1f (x)〉〈α,D−1g(x)〉 (50)

which has the following kernel

S2
ϕ(x − y) = (D−1)TAD−1(x − y)+

∫
dν (α)

∫
dz 〈α,D−1(z − x)〉〈α,D−1(z − y)〉. (51)

(4) The setD̃−1 ∗ C ≡ {∑i αiD̃−1(·− x)| where{xi} ∈ Cif (RD) andαi ∈ supp dν for
all i} is the carrier set of the Poisson part of the measure dµD, see remark 2.11.

(5) If the noise isτ -covariant then the random fieldϕ is τ -covariant, provided that the
test function spaceF is T τ -invariant.

(6) In the case of a strongly regular equation the corresponding solution is Markov.
The preservation of the Markov property under the transformationη −→ D−1η with
detD̂(ip) 6= 0, p ∈ RD follows immediately from [30]. The case of nontrivial kerD is
more subtle [27, 34, 47]. The solutions of (33) withη being Gaussian lead to Gaussian
solutions and are therefore not very interesting from the point of view of physics. This
is why we require that the Poisson part of the white noiseη is nonzero in all further
applications.

Remark 2.18.Other fundamental properties of the fieldϕ like Markov property, lattice
approximation(s) will be discussed elsewhere (see e.g. [5, 27, 30, 36]).

3. Fourier–Laplace transform properties of the solutions

Let us define the following spaces of functions:

S+(RDn) = {f ∈ S(RDn)|f and all its derivatives vanish unless 0< x0
1 < x0

2 < · · · < x0
n}

S0(RDn) = {f ∈ S(RDn)|f and all its derivatives vanish ifxi = xj
for some 16 i < j 6 n}

S(R+) = {f ∈ S(R)|suppf ⊆ [0,∞)} S(R−) = {f ∈ S(R)|suppf ⊆ (−∞, 0]}.
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We identify the following spaces:

S(R+) = S(R)/S(R−) S(R+
D
) = S(R+)⊗ S(RD−1)

S(RD;RN) = RN ⊗ S(RD)
S(RDn; (RN)⊗n) = (RN)⊗n ⊗ S(RDn)
S+(RDn; (RN)⊗n) = (RN)⊗n ⊗ S+(RDn)
S0(RDn; (RN)⊗n) = (RN)⊗n ⊗ S0(RDn)

S((R+
D
)n; (RN)⊗n) = (RN)⊗n ⊗ S(R+Dn).

The following maps will be used:

d : S(RDn) 3 f 7→ f d(x1, x2− x1, . . . , xn − xn−1) ≡ f (x1, . . . , xn). (52)

The mapd is a morphism ofS+(RDn; (RN)⊗n) into S((R+
D
)n; (RN)⊗n). The Fourier–

Laplace transform onS(R+
Dn
) is

S(R+
Dn
) 3 fn 7→ f FL

n (q1, . . . , qn) =
∫

e−
∑n

k=1 q
0
k x

0
k ei

∑n
k=1 qk ·xk fn(x1, . . . , xn)⊗nl=1 dxl. (53)

Finally, we have the map

η : S+(RD(n+1)) 3 fn 7→ ηfn ∈ S(R+Dn) (54)

where

η(fn)(p1, . . . , pn) ≡ f d,FL
n (p1, . . . , pn)|{p0

k>0}. (55)

It is well known [41] that the mapη is continuous with dense range inS(RDn+ ) and trivial
kernel. The notions ofd, of taking the Fourier–Laplace transform and of the mapη naturally
extend to the case of distributions with multi-indices.

Definition 3.1.A distribution Fn+1 ∈ S ′+(RD(n+1), (RN)⊗(n+1)) has the Fourier–Laplace

property (the FL property) iff there exists a distributionWn ∈ S ′(RD+, (RN)⊗n) such that

Fdn+1(x0, . . . , xn) ≡
∫

e−
∑n

k=1 p
0
k x

0
k ei

∑n
k=1 pk ·xkWn(p1, . . . , pn) dp1 . . . dpn (56)

where the equality is understood in the sense of distributions, see e.g. [12, 40, 41].

There are several necessary and sufficient conditions which guarantee that a givenFn ∈
S ′+(RDn) has the FL property [12, 41, 43]. However, all known criteria are difficult to
check in concrete situations.

Let τ be a representation ofSO(D) in the space Aut(RN). We shall say that a tempered
distribution Sn ∈ S ′(RD; (RN)⊗n) is covariant under the action ofτ (τ -covariant) iff for
eachg ∈ SO(D) f1, . . . , fn ∈ S(RD;RN) the following equality holds:

Sn(f1⊗ · · · ⊗ fn) = Sn(Tτgf1⊗ · · · ⊗ Tτgfn) (57)

where(Tτgf )(x) ≡ τgf (g−1x). A distributionSn ∈ S ′(RD; (RN)⊗n) is called symmetric iff

Sn(f1⊗ · · · ⊗ fn) = Sn(fπ(1) ⊗ · · · ⊗ fπ(n)) (58)

for anyπ ∈ Sn(≡ permutation group) and anyf1, . . . , fn ∈ S(RD;RN).
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Proposition 3.2.Let τ be a representation of the groupSO(D) in Aut(RN). If σn ∈
S ′(RD; (RN)⊗n) is symmetric covariant under the action ofτ andσn|{y0

k>0} has FL property
then there exists a unique tempered distributionWn ∈ S ′(RD; (RN)⊗n) such that:

(1) WF
n is supported in the product of forward light conesV + ≡ {p ∈ MD|p · p >

0;p0 > 0}, i.e.

suppWn ⊆ (V +)×n

(2)Wn is covariant under the representationτM of SO(D − 1, 1), i.e.

Wn(f1⊗ · · · ⊗ fn) =Wn(TτMg f1⊗ · · · ⊗ TτMg fn) (59)

for any g ∈ L↑+(D); f1, . . . , fn ∈ S(RD;Rn) and whereτM is the analytic continuation of
τ into therepresentation ofSO(D − 1, 1) via the ‘Weyl unitary trick’,

(3)Wn is local which means that the inverse Fourier transform ofWn(x1, . . . , xn) has
the property that if somexi, xi+1 are such that(xi − xi+1)

2 < 0 then

Wn(x1, . . . , xi, xi+1, . . . , xn) =Wn(x1, . . . , xi+1, xi, . . . , xn) (60)

(4)

Sdn+1(x0, . . . , xn) ≡
∫

e−
∑n

k=1 p
0
k x

0
k ei

∑n
k=1 pk ·xkWF

n (p1, . . . , pn)

n∏
i=1

dpi (61)

for x0
1 < · · · < x0

n.

Proof. From the FL property ofSn it follows that there existsWn ∈ S ′(RD; (RN)⊗n)
such thatWn is supported on positive energies, i.e. on the set{(p1, . . . , pn)|p0

i > 0 for all
i = 1, . . . , n} and such that (4) holds. However, the distribution which is covariant under
the action of the Lorentz group must be supported in the orbit of Lorentz group [12, 28, 44]
and thus we conclude thatWn must be supported in(V +)×n. The locality ofWn follows
from the symmetry property ofSn (see e.g. [28]). The uniqueness ofWn follows from the
fact that the kernel of the Fourier–Laplace transform consists only of the vector 0.�

The difference variables momentsσn of the random fieldsA constructed in section 2
are defined as

σAn (ξ1, . . . , ξn) ≡ SAn+1(x1, . . . , xn+1) (62)

whereξi ≡ xi+1 − xi for i = 1, . . . , n. Now we are ready to formulate the main result of
this paper.

Theorem 3.1.Let τ be a real representation ofSO(D) in Aut(RN), D ∈ Cov(τ,RN) with
an admissible spectrum and letA be a solution of

D̃A = η
where η is a Tτ -invariant Poisson noise. Then the difference variables moments
σAn (x1, . . . , xn) restricted to 0< x0

1, . . . ,0< x0
n have the FL property.

The proof of this theorem will be divided into three main steps.

Proposition 3.3.Let D ∈ Cov(τ,RN) have an admissible mass spectrum with strictly
positive masses. Then the Green functionGA = (DA)−1∗ of D restricted tox0

1 < x0
2

has the FL property.
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Lemma 3.2.Let A, GA be as in proposition 3.3. Then

S2 = (|x1− x2|) =
∫

dxD−1
A (x − x1)D−1

A (x − x2) (63)

restricted tox0
1 < x0

2 has the FL property.

Lemma 3.3.Let A, GA be as in proposition 3.4. Then for anyk = 1, 2, . . . the distribution
S ′k, where

S ′k(x1, . . . , xk) ≡
∫

dxD−1
A (x − x1) . . .D−1

A (x − xk) (64)

restricted tox0
1 < · · · < x0

k has the FL property.

The separation of the proof into lemma 3.2 and lemma 3.3 is made for reader’s convenience
only. Having proved proposition 3.1 and lemma 3.3, the proof of theorem 3.3 follows by
observing that the FL property is stable under taking tensor products and using formula
(47). The case that some of the masses are zero is easily covered by using the continuity of
the Fourier–Laplace transform and an easily controlled limiting procedure: we artificially
introduce small nonzero masses in the corresponding formulae, then let them tend to zero.
Although the covariance might be broken by introducing these masses it can be restored in
the limit.

Proof of proposition 3.3.The typical matrix elementGαβ

A of GA has the form

G
αβ

A (p) =
Qαβ(p)∏n

i=1(p
2
0 + p2+m2

i )
(65)

whereQαβ are polynomials in the variablesp of degree lower or equalN−2 and allmi > 0
due to assumption made onD.

Let us first assume that all themi in equation (65) are different. Regarding the right-hand
side of (65) as a function ofp0 we can decompose it into elementary quotients

Qαβ(p)∏n
i=1(p

2
0 + p2+m2

i )
=

n∑
i=1

Q
αβ

i (p0,p)

(p2
0 + p2+m2

i )
(66)

whereQαβ

i (p0,p) ≡ Aαβ,i(p)p0+Bαβ,i(p). Aαβ,i(p), Bαβ,i(p) are rational functions in the
variablep which have no singularities on the real line. It is well known that the distribution

S2
�,i (x) =

∫
1

p2
0 + p2+m2

i

e−ipx dp (67)

has the FL property with the underlying distributionW0
i given byW0

i (p0,p) = ε(p0)δ(p
2
0−

p2 −m2), whereε(p0) = 1 if p0 > 0 and 0 otherwise. The inverse Fourier transform of a
typical term appearing in (66) is given forx0 > 0(
A
αβ

i (i∇)i
∂

∂x0
+ Bαβi (i∇)

)
S2
�,i (x

0,x)

= (Aαβi (i∇)i
∂

∂x0
+ Bαβi (i∇))

(∫ ∞
0

∫
e−p0x0e−ip·xδ(p2

0 − p2−m2
i ) dp0 dp

)
=
∫ ∞

0

∫
e−p0x0e−ip·xδ(p2

0 − p2−m2
i )B

αβ

i (p) dp0 dp

+
∫ ∞

0

∫
e−p0x0e−ip·x{−ip0A

αβ

i (p)δ(p
2
0 − p2−m2

i )} dp0 dp (68)
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and this shows that the inverse Fourier transform of each term in (66) is the Fourier–Laplace
transform with underlying distribution for theith term

Wαβ

i (p0,p) = {Bαβi (p)− ip0A
αβ

i (p)}δ(p2
0 − p2−m2

i )ε(p0) (69)

andWαβ

G (p0,p) ≡
∑

iW
αβ

i (p0,p).
Let us now consider the case that some of themi in equation (65) are equal. In this

case the right-hand side of (65) is a sum of terms of the following form

Q(p0,p)

(p2
0 + p2+m2)α

where the integerα is > 1. The FL property now follows from the above arguments and
the following formula, which can be obtained by contour integration.∫ ∞

−∞

e−ip0x0

(p2
0 + ω2)α

dp0 =
α−1∑
k=0

Aαk |x0|α−1−k e−ω|x0|

ωα+k

whereω2 = p2+m2 andAαk ∈ R. This completes the proof of proposition 3.4. �

In the proofs of lemmas 3.2 and 3.3 we shall assume for notational simplification that
all themi in equation (65) are different so that we can use expansion (66).

Proof of lemma 3.2.We shall proceed very close to the proof of theorem 4.21 in [4]. First,
we use the following identity∫ +∞
−∞

e−ζ1|t−t1|e−ζ2|t−t2| dt = 1

ζ1+ ζ2
e−ζ2(t2−t1) + 1

ζ1+ ζ2
e−ζ1(t2−t1)

+(t2− t1)
∫ 1

0
e−(ζ1s+(1−s)ζ2)(t2−t1) ds (70)

which is valid for anyt1, t2 ∈ R, ζ1, ζ2 ∈ C such thatt2 − t1 > 0, <ζ1 > 0, and<ζ2 > 0.
Second we note that:∫
RD−1

∫ ∞
0

e−p0|x0|e−ip·xWαβ

i (p0,p) dp0 dp = −i

2

∫
RD−1

e−
√
p2+m2

i |x0|e−ip·xA
αβ

i (p)d
D−1p

+1

2

∫
RD−1

e−
√
p2+m2

i |x0|√
p2+m2

i

e−ip·xB
αβ

i (p) dD−1p. (71)

Now, we have

S(y1− y2) ≡
∫

dx0 dxD−1(x − y1)D−1(x − y2)

=
∫

dx0 dxD−1(|x0− y0
1|, (x− y1))D−1(|x0− y0

2|, (x− y2))

=
∫ +∞
−∞

dx0
∫

dx
∫

dp1

∫
dp2 e−p

0
1|x0−y0

1 |e−p
0
2|x0−y0

2 |e−ip1·(x−y1)e−ip2·(x−y2)

×WG(p
0
1,p1)WG(p

0
2,p2)

=
∫

dx
∫

dp1

∫
dp2

{
1

p0
1 + p0

2

(e−p
0
1(y

0
2−y0

1) + e−p
0
2(y

0
2−y0

1))

+(y0
2 − y0

1)

∫ 1

0
ds e−(p

0
1s+(1−s)p0

2)(y
0
2−y0

1)

}
e−ip1·(x−y1)e−ip2·(x−y2)

×WG(p
0
1,p1)WG(p

0
2,p2). (72)
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Defining the following functions

5
αβi,α′β ′i∗
(1) = −1

4

∫
dp e−ip·(y2−y1)

A
αβ

i (−p)Aα
′β ′
i∗ (p)√

p2+m2
i +

√
p2+m2

i∗

{e−
√
p2+m2

i (y
0
2−y0

1)

+e−
√
p2+m2

i∗ (y
0
2−y0

1)} (73)

5
αβi,α′β ′i∗
(2) = 1

4

∫
dp e−ip·(y2−y1)

B
αβ

i (−p)Bα
′β ′

i∗ (p)√
p2+m2

i +
√
p2+m2

i∗

×{e−
√
p2+m2

i (y
0
2−y0

1) + e−
√
p2+m2

i∗ (y
0
2−y0

1)} (74)

5
αβi,α′β ′i∗
(3) = − i

4

∫
dp e−ip·(y2−y1)

B
αβ

i (−p)Aα
′β ′
i∗ (p)√

p2+m2
i

(√
p2+m2

i +
√
p2+m2

i∗

)
×{e−
√
p2+m2

i (y
0
2−y0

1) + e−
√
p2+m2

i∗ (y
0
2−y0

1)} (75)

5
αβi,α′β ′i∗
(4) = − i

4

∫
dp e−ip·(y2−y1)

A
αβ

i (−p)Bα
′β ′

i∗ (p)√
p2+m2

i∗

(√
p2+m2

i +
√
p2+m2

i∗

)
×{e−
√
p2+m2

i (y
0
2−y0

1) + e−
√
p2+m2

i∗ (y
0
2−y0

1)} (76)

0
αβi,α′β ′i∗
(1) = −1

4
(y0

2 − y0
1)

∫
dp e−ip·(y2−y1)A

αβ

i (−p1)A
α′β ′
i∗ (p2)

×
∫ 1

0
ds e−
√
p2+m2

i (y
0
2−y0

1)s e−
√
p2+m2

i∗ (y
0
2−y0

1)(1−s) (77)

0
αβi,α′β ′i∗
(2) = 1

4
(y0

2 − y0
1)

∫
dp e−ip·(y2−y1)

B
αβ

i (−p)Bα
′β ′

i∗ (p)√
p2+m2

i

√
p2+m2

i∗

×
∫ 1

0
ds e−
√
p2+m2

i (y
0
2−y0

1)se−
√
p2+m2

i∗ (y
0
2−y0

1)(1−s) (78)

0
αβi,α′β ′i∗
(3) = − i

4
(y0

2 − y0
1)

∫
dp e−ip·(y2−y1)

B
αβ

i (−p)Aα
′β ′
i∗ (p)√

p2+m2
i

×
∫ 1

0
ds e−
√
p2+m2

i (y
0
2−y0

1)se−
√
p2+m2

i∗ (y
0
2−y0

1)(1−s) (79)

0
αβi,α′β ′i∗
(4) = − i

4
(y0

2 − y0
1)

∫
dp e−ip·(y2−y1)

A
αβ

i (−p)Bα
′β ′

i∗ (p)√
p2+m2

i∗

×
∫ 1

0
ds e−
√
p2+m2

i (y
0
2−y0

1)se−
√
p2+m2

i∗ (y
0
2−y0

1)(1−s). (80)

We obtain after some calculations that

S
αβ,α′β ′
2 (y2− y1) =

∫
dxD−1

αβ (x − y1)D−1
α′β ′(x − y2)

≡
4∑
δ=1

(∑
i,i∗
5
αβi,α′β ′i∗
δ +

∑
i,i∗
0
αβi,α′β ′i∗
δ

)
. (81)
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From the explicit formulae (73)–(80) it follows that all the functions listed can be analytically
continued in the variabley0

2 − y0
1 to the Minkowski space values i(y0

2 − y0
1)

Proof of lemma 3.3.The following (see [4, equations 4.16])∫ n∏
i=1

e−ζi |t−ti | dt = 1

ζ1+ · · · + ζn e−ζ2(t2−t1) . . .e−ζn(tn−t1) +
n−1∑
j=1

j−1∏
i=1

e−ζi (tj−ti )(tj+1− tj )

×
n∏

i=j+2

e−ζi (ti−tj+1)

∫ 1

0
e−[(ζ1+···+ζj )s+(ζj+1+···+ζn)(1−s)(tj+1−tj )] ds

+ 1

ζ1+ · · · + ζn e−ζ1(tn−t1) · · ·e−ζn−1(tn−tn−1) (82)

is valid for anyt1 < t2 < · · · < tn and complex numbersζi such that<ζi > 0 for all i and
the decomposition (66) is used to derive the following representation ofS

,d
k :

S
,dα1β1...αkβk
k (x1, . . . , xk) ≡

∫
dxD−1α1β1

A (x − x1) . . .D−1αkβk
A (x − xk)

=
n∑

δ1=1

. . .

n∑
δn=1

∫
dp0

1 dp1 . . .dp
0
k dpk

k∏
j=1

Wαkβk
δk

(p0
j ,pj )

×
∫

dx
k∏

j=1

e−i(x−xj )·pj
∫

dx0
k∏

j=1

e−p
0
j |x0−x0

j |

=
n∑

δ1=1

. . .

n∑
δn=1

∫
dp0

1 dp1 . . . dp0
k dpk

∫
dx

k∏
j=1

e−i(x−xj )·pj
k∏

j=1

Wαkβk
δk

(p0
j ,pj )

×
{

1

p0
1 + · · · + p0

k

k∏
j=1

e−p
0
j (x

0
j −x0

1) +
n−1∑
j=1

j−1∏
i=1

e−p
0
i (x

0
j −x0

i )(x0
j+1− x0

j )

×
n∏

i=j+2

e−p
0
i (x

0
i −x0

j+1)

∫ 1

0
ds e−[(p0

1+···+p0
j )s+(p0

j+1+···+p0
k )(1−s)(x0

j+1−x0
j )]

+ 1

p0
1 + · · · + p0

k

e−p
0
1(x

0
k−x0

1) . . .e−p
0
k−1(x

0
k−x0

k−1)

}
. (83)

Similarly, as in the proof of lemma 3.2, when using the explicit expressions for{Wαβ

δ (p0,p)}
given in the proof of proposition 3.3 one can see that the functionsS

′dα1β1...αkβk
k are given

by sums, where each term is manifestly given by the Fourier–Laplace transforms of some
tempered distribution supported on positive energies. �

Remark 3.4.Let {Wn} be a set of Wightman distributions, which are local,τM -covariant, and
fulfil the weak form of the spectral axiom. Then, using a version of the GNS construction
(see e.g. [46] for this), one can construct an inner product spaceHph with the inner product
〈·, ·〉Hph, a linear weakly continuous map

Aq : S(RD)⊗ RN −→ `(Hph)

where `(Hph) is the set of linear not necessarily bounded operators acting onHph, a
nonunitary and unbounded representationUM

τM
of P↑+(D) in Hph under which the quantum-

field operatorAq transforms covariantly, and a vector�, the physical vacuum, which is
cyclic with respect to the action ofAq(f ) and invariant with respect toUM

τM
.
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4. Examples inD = 3

The complete description of the set of all covariant operatorsD ∈ Cov(τ ) where τ is
any finite dimensional representation of the groupSO(3) or SO(1, 3) is given in the
monographs [17, 35], see also [32]. To illustrate our general theory developed in the
previous paragraphs we focus on the lowest-dimensional real representationsD0 ⊕ D1,
D1⊕D1 andD 1

2
⊕D 1

2
of the groupSO(3). The much more interesting caseD = 4 shall

be analysed in a greater details in our forthcoming paper [19]. The examples presented
below do not cover all the possibilities. The crucial point is that we have used a rather
special realification procedure in order to transform the complex description of the sets
Cov(τ ) given in [17, 35, 32] into a manifestly real form. Our realification is achieved by a
certain similarity transformation, fixed by the choice of a realification matrixEτ . Different
choices of the realification procedure may lead to different families of covariant operators,
not necessary connected by a real similarity transformation.

4.1.D0⊕D1: Higgs-like models

This class of models described a doublet of fieldsϕ = (ϕ0,A) whereϕ0 is the scalar field
andA is the vector field, coupled by noise through the corresponding covariant SPDE of
the form (33).

The realification matrixE(0,1) is chosen to be,

E(0,1) = 1√
2


√

2 0 0 0
0 i 0 −i
0 1 0 1
0 0 i

√
2 0

 . (84)

The real form of the corresponding covariant operatorsD(0,1) ∈ Cov((D0 ⊕ D1)
R) with

respect toSO(3) with the mass termM = m010⊕m113 is given by

D̂(0,1)(p) =


m0 aip0 aip1 aip2

bip0 m1 −cip2 cip1

bip1 cip2 m1 −cip0

bip2 −cip1 cip0 m1

 (85)

with a, b, c ∈ R with detD̂(0,1)(ip) = (−c2p2+m2
1)(abp

2+m0m1)

To obtain an admissible mass spectrum we need to put eitherc = 0 or m1 = 0, thus
giving up the ellipticity of D̂. Admissible covariant operators are obtained iffc = 0 if
m1 6= 0 or m1 = 0. We add that the operator is covariant with respect toO(3) iff c = 0.
The Green function is given by

D̂−1
(0,1)(ip) =

1

abp2+m0m1


m1 −aip0 −aip1 −aip2

−bip0

−bip1

−bip2

Gµν(p)


(86)

where

Gµν(p) = 1

−c2p2+m2
1

{(abp2+m0m1)(m1δµν + ciεµνλpλ)− pµpν(abm1+ c2m0)}
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for µ, ν ∈ {0, 1, 2}. The corresponding two-point function (more precisely the contribution
coming from the Poisson piece of noise and not integrated with Lévy measureν, see
equation 2.50):

Ŝ
(2)
(0,1)(p, α) = (Ŝ(2)kl (p, α)) =



Ŝ
(2)
33 (p, α) Ŝ

(2)
30 (p, α) Ŝ

(2)
31 (p, α) Ŝ

(2)
32 (p, α)

Ŝ
(2)
03 (p, α)

Ŝ
(2)
13 (p, α)

Ŝ
(2)
23 (p, α)

Ŝ(2)µν (p, α)


(87)

where

Ŝ
(2)
33 (p, α) = |m1α3− ibαµpµ|2/(abp2+m0m1)

2

Ŝ
(2)
3µ (p, α) = Ŝ(2)µ3 (−p, α) = (m1α3− ibαλpλ)[m1(abp

2+m0m1)αµ

+ia(−c2p2+m2
1)α3pµ − (abm1+ c2m0)αλpλpµ]

/(−c2p2+m2
1)(abp

2+m0m1)
2

Ŝ(2)µν (p, α) = [a2α2
3 + (αλpλ)2(abm1+ c2m0)

2/(−c2p2+m2
1)

2]pµpν/(abp
2+m0m1)

2

+m2
1αµαν/(−c2p2+m2

1)
2−m1(abm1+ c2m0)αλpλ(pµαν + pναµ)

/(−c2p2+m2
1)

2(abp2+m0m1)

−iam1α3(pµαν − pναµ)/(−c2p2+m2
1)(abp

2+m0m1)

for µ, ν ∈ {0, 1, 2}.
Above we have used the notation for the variable of Lévy measure:α ≡ (α3, α0, α1, α2).

Remarks. The representationD0 ⊕ D1 is also of quaternionic type [13]. Choosing
m2

0+m2
1 = 0 anda = −1, b = 1, c = 1 (respectivelya = −1, b = 1, c = −1) we obtain the

purely quaternionic description of the corresponding Clifford algebra ofR3 Dirac operators.
More explicitly let C(R3) denote the corresponding Clifford algebra overR3 and3(R3)

the exterior algebra ofR3. Let us denote byC(R3) = C+(R3)⊕ C−(R3) (respectively by
3(R3) = 3+(R3)⊕3−(R3)) the canonical decomposition ofC(R3) (respectively of3(R3)).
Let H stand for the noncommutative field of quaternions with the base{1, i, j,k}. Noting
that C(R3) ∼= H ⊕ H and3(R3) ∼= H ⊕ H and using two nonequivalent representations
of H onH given by left (respectively right) multiplication we obtain the following explicit
expressions for the corresponding left (respectively right) Dirac operator of3(R3):

DL ≡ L(i)∂0+ L(j)∂1+ L(k)∂2 ≡


0 −∂0 −∂1 −∂2

∂0 0 −∂2 ∂1

∂1 ∂2 0 −∂0

∂2 −∂1 ∂0 0

 (88)

respectively

DR ≡ R(i)∂0+ R(j)∂1+ R(k)∂2 ≡


0 −∂0 −∂1 −∂2

∂0 0 ∂2 −∂1

∂1 −∂2 0 ∂0

∂2 ∂1 −∂0 0

 (89)

with the properties

DLD∗L = −M314
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whereD∗ = −DT, and respectively

DRD∗R = −M314

whereD∗L = −L(i)∂0−L(j)∂1−L(k)∂2 (respectivelyD∗R = −R(i)∂0−R(j)∂1−R(k)∂2).
Another simple covariant decomposition of the three-dimensional Laplacian−M3 can be
described by

D =


0 ∂0 ∂1 ∂2

∂0 0 −∂2 ∂1

∂1 ∂2 0 −∂0

∂2 −∂1 ∂0 0

 (90)

and

DT =


0 ∂0 ∂1 ∂2

∂0 0 ∂2 −∂1

∂1 −∂2 0 ∂0

∂2 ∂1 −∂0 0

 (91)

and thenDDT = M314. This corresponds to the choicea = 1, b = 1 and c = +1
(respectively−1) in (85). The question of the covariance properties of this decomposition
was the starting point of this research.

4.2.D1⊕D1: Interacting vector fields

The models of this sort describe a doublet of vector fieldsA = (A0, A1, A2), B =
(B0, B1, B2) coupled to itself by the noise in the corresponding covariant SPDE.

The realification matrixE(1,1) is chosen to be:

E(1,1) = 1√
2


i 0 −i 0 0 0
1 0 1 0 0 0
0 i
√

2 0 0 0 0
0 0 0 i 0 −i
0 0 0 1 0 1
0 0 0 0 i

√
2 0

 . (92)

The manifestly real expressions forD(1,1) ∈ Cov((D1 ⊕D1)
R) obtained by the application

of E(1,1) are given by:

D̂(1,1)(p) =


m1 −aip2 aip1 0 −bip2 bip1

aip2 m1 −aip0 bip2 0 −bip0

−aip1 aip0 m1 −bip1 bip0 0
0 −cip2 cip1 m2 −d ip2 d ip1

cip2 0 −cip0 d ip2 m2 −d ip0

−cip1 cip0 0 −d ip1 d ip0 m2

 (93)

where the central elementM = m113⊕m213, m1, m2 ∈ R.
Computing detD̂(1,1)(ip) we obtain:

detD̂(1,1)(ip) = m1m2{(ad − bc)2p4+ ((m2
2a

2)+ 2bcm1m2+m2
1d

2)p2+m2
1m

2
2}.
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The conditions for the proper mass spectrum could be easily obtained asD̂(1,1)(ip) is a
biquadratic polynom. Provided that detD̂(1,1)(ip) 6= 0 we can invert the matrix̂D(1,1)(ip)
obtaining the corresponding Green function

D̂−1
(1,1)(p, α) =

1

{f 2p4− (h2− 2fm1m2)p2+m2
1m

2
2}


G(1,1)
µν (p, α) G(1,2)

µν (p, α)

G(2,1)
µν (p, α) G(2,2)

µν (p, α)

 (94)

where we havef ≡ ad − bc, h ≡ am2+ dm1 and

G(1,1)
µν (p, α) = m1m2(−e1p

2+m1m
2
2)δµν +m2(f

2p2−m2e2)pµpν

+m1m2(−dfp2+ am2
2)iεµνλpλ

G(1,2)
µν (p, α) = bm1m2{hp2δµν − hpµpν + (fp2+m1m2)iεµνλpλ}

for µ, ν ∈ {0, 1, 2} with e1 ≡ (d2m1+ bcm2), e2 ≡ (a2m2+ bcm1).
The two last blocks of the Green matrix can be obtained by making the following

exchanges:a ↔ d, m1↔ m2 within theG(1,1)
µν (p, α) matrix to getG(2,2)

µν (p, α) andb↔ c

within G(1,2)
µν (p, α) to getG(2,1)

µν (p, α). The corresponding two-point Schwinger function
(more precisely the contribution coming from Poisson piece of the noise without integration
over ν as in the previous case) is given by

Ŝ
(2)
(1,1)(p, α) =

1

{f 2p4− (h2− 2fm1m2)p2+m2
1m

2
2}2


Ŝ(1,1)µν (p, α) Ŝ(1,2)µν (p, α)

Ŝ(2,1)µν (p, α) Ŝ(2,2)µν (p, α)

 (95)

with

Ŝ(1,1)µν (p, α) = [m2(f
2p2−m2e2)αλpλ − cm1m2hβλpλ]

2pµpν

+[m2(f
2p2−m2e2)αλpλ − cm1m2hβλpλ]

×[m1m2(−e1p
2+m1m

2
2)(pµαν + pναµ)+ cm1m2hp

2(pµβν + pνβµ)]
+cm2

1m
2
2hp

2(−e1p
2+m1m

2
2)(αµβν + ανβµ)

+m2
1m

2
2(−e1p

2+m1m
2
2)

2αµαν + (cm1m2hp
2)2βµβν

Ŝ(1,2)µν (p, α) = −m1m2{hbm2(f
2p2−m2e2)(αλpλ)

2

+hcm1(f
2p2− e1m1)(βλpλ)

2− αλpλβωpω
×[(f 2p2−m2e2)(f

2p2−m1e1)+m1m2bch
2]}pµpν +m1m

2
2

×bhp2[(f 2p2−m2e2)αλpλ −m1chβλpλ]pµαν +m2
1m2(−e1p

2+m1m
2
2)

×[(f 2p2−m1e1)βλpλ −m2bhαλpλ]pναµ +m1m
2
2(−e2p

2+m2
1m2)

×[(f 2p2−m2e2)αλpλ −m1chβλpλ]pµβν +m2
1m2chp

2

×[(f 2p2−m1e1)βλpλ − bm2hαλpλ]pνβµ +m2
1m

2
2hp

2

×[b(−e1p
2+m1m

2
2)αµαν + c(−e2p

2+m2
1m2)βµβν ]

+m2
1m

2
2(−e1p

2+m1m
2
2)(−e2p

2+m2
1m2)αµβν + bc(m1m2hp

2)2ανβµ

for µ, ν ∈ {0, 1, 2}.
We use the notation for the variable of Lévy measure:α ≡ (α0, α1, α2, β0, β1, β2). The

block Ŝ(2,2)µν (p, α) can be obtained by the exchangesa ↔ d, m1 ↔ m2 andb ↔ c in the

block Ŝ(1,1)µν (p, α) and the blockŜ(2,1)µν (p, α) by b↔ c within the blockŜ(1,2)µν (p, α).
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It is worthwhile to observe that in the variety of covariant operators there does not exists
a reflection covariant operator. By specialization of the parameters of the covariant operator
we can find in the Gaussian part of two-point Schwinger function the Euclidean two-point
function of two copies of the so-called Euclidean Proca field introduced in [22, 23, 52, 53].
If we put

a = d = 0 b2 = c2 = 1 bc = −1 and m1 = m2 = m (96)

then we obtain for the Gaussian part

Ŝ
(2)
G;(1,1))(p) =


(
δµν + pµpν

m2

)
1

p2+m2

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

(
δµν + pµpν

m2

)
1

p2+m2

 . (97)

The corresponding covariance matrix isA = 16 (see equation 2.17).

4.3. TheD 1
2
⊕D 1

2
-case

This representation seems not to be of physical interest since it contradicts usual spin-
statistic connection. We note that in the case of nonpositive quantum-field theory the usual
connection between spin and statistic could be violated [12]. We use theD 1

2
⊕D 1

2
-covariant

noiseη. In this context the study of realifications of this representation could be more useful
than the analysis of the corresponding covariant operators, Green and Schwinger functions.
However, we mention this case to complete the list of the lowest dimensional cases.

The realification matrixE( 1
2 ,

1
2 )

is

E( 1
2 ,

1
2 )
= 1√

2


1 0 0 1
i 0 0 −i
0 1 −1 0
0 i i 0

 . (98)

The covariant operator in the Fourier representation is

D̂( 1
2 ,

1
2 )
(p) =


cip0− d ip1− aip2+m −d ip0− cip1− bip2

−d ip0− cip1+ bip2 −cip0+ d ip1− aip2+m
aip0+ bip1+ cip2 bip0− aip1− d ip2

−bip0+ aip1− d ip2 aip0+ bip1− cip2

aip0− bip1+ cip2 bip0+ aip1− d ip2

−bip0− aip1− d ip2 aip0− bip1− cip2

−cip0− d ip1+ aip2+m d ip0− cip1+ bip2

d ip0− cip1− bip2 cip0+ d ip1+ aip2+m

 (99)

with a, b, c, d ∈ R and det(D̂( 1
2 ,

1
2 )
(p)) = [(a2+ b2+ c2+ d2)p2+m2]2− 4m2b2p2.

We can get the admissible mass spectrum taking, for example,b = 0.
We can use the methods presented above to obtain explicit formulae for the Green

functions and the Schwinger functions. The corresponding expressions are much more
complicated than in the examples above and will therefore not be presented here.
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